A Study On Intuitionistic Anti L-Fuzzy Normal M-Subgroups
|
International Journal of Computer & Organization Trends (IJCOT) | |
© 2014 by IJCOT Journal | ||
Volume - 4 Issue - 5 |
||
Year of Publication : 2014 | ||
Authors : P. Pandiammal | ||
DOI : 10.14445/22492593/IJCOT-V13P304 |
Citation
P. Pandiammal. "A Study On Intuitionistic Anti L-Fuzzy Normal M-Subgroups ", International Journal of Computer & organization Trends (IJCOT), V4(5):57-63 Sep - Oct 2014, ISSN:2249-2593, www.ijcotjournal.org. Published by Seventh Sense Research Group.
Abstract
In this paper, we introduce the concept of intuitionistic anti L-fuzzy normal M- subgroups and investigate some related properties.
References
[1] Aktas, H and Cagman, N., "Generalized product of fuzzy subgroup and t – level subgroups", Math. Commun, Vol. 11, pp.121– 128, 2006.
[2] Atanassov. K. T.," Intuitionistic fuzzy sets", Fuzzy sets and systems, Vol. 20, pp. 87 – 96,1986
[3] Atanassov. K. T., "New operations defined over the intuitionistic fuzzy sets", Fuzzy sets and systems, Vol. 61, pp.137 –142, 1994
[4] Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications 35, (1971) 512-517.
[5] R. Biswas, Fuzzy subgroups and anti-fuzzy subgroups, Fuzzy Sets and Systems 35 (1990), 121-124.
[6] Choudhury. F. P and Chakraborty. A. B and Khare. S. S., "A note on fuzzy subgroups and fuzzy homomorphism", Journal of mathematical analysis and applications, Vol.131, pp.537 – 553,1988.
[7] J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl.18(1967),145-179.
[8] Jacobson. N., Lectures in abstract algebras. East – west press, 1951.
[9] Mohamed Asaad, Groups and Fuzzy Subgroups, Fuzzy Sets and Systems 39(1991)323-328.
[10] Massa`deh. M. O and For a. A.A., "Centralizer of upper fuzzy groups", Pioneer journal of mathematics and mathematical sciences, Vol.1, pp. 81-88, 2011
[11] N.Palaniappan, R.Muthuraj, The homomorphism, Anti-homomorphism of a fuzzy and an anti-fuzzy group, Varahmihir Journal of mathematical Sciences, 4 (2)(2004) 387-399.
[12] N.Palaniappan , S. Naganathan, & K. Arjunan, A Study on Intuitionistic L-Fuzzy Subgroups, Applied mathematical Sciences, 3 (53) (2009) 2619-2624.
[13] Pandiammal. P, Natarajan. R, and Palaniappan. N , Anti L-fuzzy M- subgroups, Antarctica J. Math., Vol. 7, number 6, 683-691, (2010).
[14] Pandiammal. P, Intutitionistic anti L-fuzzy M-subgroups, International Journal of computer and organization Trends – Volume 5 – February (2014) 43-52
[15] Prabir Bhattacharya, Fuzzy subgroups: Some characterizations, J. Math. Anal. Appl. 128 (1981) 241-252.
[16] Rosenfeld. A.," Fuzzy groups", J. Math. Anal. Appl, Vol. 35, pp. 512 – 517, 1971.
[17] Roventa. A and Spircu. T.," Groups operating on fuzzy sets", Fuzzy sets and systems, Vol. 120 , pp. 543 – 548,2001.
[18] Sulaiman. R and Ahmad. A. G.," The number of fuzzy subgroups of finite ncyclic groups", Int. Math. Forum, Vol.6 , pp. 987 – 994,2011.
[19] Tarnauceanu. M and Bentea.L.," On the number of fuzzy subgroup of finite abelian groups", Fuzzy sets and systems, Vol. 159, pp. 1084 – 1096,2008.
[20] L.A. Zadeh, Fuzzy sets, Information and control, 8, (1965) 338-353.
Keywords
Intuitionistic fuzzy subsets; Intuitionistic anti fuzzy subgroups; Intuitionistic anti L-fuzzy M- subgroups; Intuitionistic anti L-fuzzy normal M-subgroups; M- homomorphism.