
International Journal of Computer and Organization Trends Volume 15 Issue 1, 33-40, Jan-Apr 2025

ISSN: 2249 – 2593 / https://doi.org/10.14445/22492593/IJCOT-V15I1P304 © 2025 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Multi-Agent Monitoring System for Computer

Networks

Amwayi Harrison1, Abraham Mutua2

1,2Department, Computing and Information Technology, Kenyatta University, Kenya.

1Corresponding Author : harryamwayi@gmal.com

Received: 09 January 2025 Revised: 13 February 2025 Accepted: 05 March 2025 Published: 19 March 2025

Abstract - In today's business landscape, reliable network infrastructure is essential for uninterrupted operations. As networks

increase in complexity, effective monitoring systems become crucial to ensure device performance and availability. This study

presents a multi-agent-based system for monitoring computer network devices, utilizing autonomous agents to gather data

through the Simple Network Management Protocol (SNMP). The proposed solution addresses scalability and network

congestion challenges often seen in centralized monitoring systems by leveraging Apache Kafka to distribute and manage

monitoring data efficiently while autonomous agents handle data collection, thereby reducing latency and minimizing network

load. The research first examines existing multi-agent applications that leverage SNMP agents, identifying their limitations

before introducing a novel model that integrates SNMP agents with Apache Kafka to facilitate scalable data ingestion. The

system's performance was tested in a simulated environment, and significant enhancements in scalability and efficiency were

observed for real-time monitoring. The findings conclude that combining multi-agent systems with Apache Kafka offers a

robust framework for efficient, real-time network monitoring, with improved scalability and reduced latency compared to

traditional centralized models.

Keywords - Network Monitoring, Multi-Agent Systems, Apache Kafka, Simple Network Management Protocol (SNMP),

Scalability.

1. Introduction
The rapid expansion of network technologies has

significantly increased the complexity of managing modern

networks. Efficient network management systems are

essential for optimizing resource utilization, maintaining

reliability and ensuring high performance [2]. As networks

grow in scale and dynamism, traditional approaches to

monitoring and troubleshooting face increasing limitations,

making real-time decision-making more challenging [8],

[13]. Network monitoring is critical in overcoming these

challenges by providing administrators with real-time

insights into traffic patterns, device utilization and key

performance metrics necessary for proactive management

[11].

Modern network monitoring systems have evolved to

incorporate automation, intelligent analytics, and scalable

architectures to keep pace with industry demands, improving

overall network control and responsiveness [3]. Among these

frameworks, the Simple Network Management Protocol

(SNMP) remains one of the most widely used standards for

monitoring and managing network devices. SNMP enables

administrators to retrieve device statistics, modify

configurations and analyse network performance [6]. Over

the years, multiple versions of SNMP have been developed,

with SNMPv3 offering enhanced security and reliability [5],

[12].

However, despite its widespread adoption, traditional

SNMP-based monitoring architectures exhibit significant

scalability challenges in large-scale environments.

Conventional implementations rely on centralized Network

Management Stations (NMS) that collect and process SNMP

data from all monitored devices. As the number of network

devices increases, centralized architectures experience traffic

congestion and increased latency and processing bottlenecks,

ultimately limiting real-time analytics and decision-making

capabilities. This issue is particularly problematic in dynamic

and large-scale networks where rapid data processing is

critical.

Existing research has primarily focused on improving

SNMP security, optimizing query efficiency and enhancing

protocol performance [4], [7]. However, limited attention has

been given to addressing the scalability bottlenecks inherent

in centralized SNMP-based monitoring systems. While some

solutions advocate vertical scalability—enhancing hardware

resources such as CPU, memory and storage—this approach

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Amwayi Harrison & Abraham Mutua / IJCOT, 15(1), 33-40, 2025

34

is constrained by physical limitations and escalating costs. In

contrast, horizontal scalability, which involves distributing

workloads across multiple interconnected nodes, offers a

more flexible and sustainable solution for large-scale

network monitoring.

This research addresses the critical gap in scalable

SNMP-based monitoring by proposing a distributed

architecture. The proposed system integrates SNMP with

Apache Kafka and MySQL to facilitate scalable and efficient

SNMP data collection and processing by distributing

monitoring tasks across multiple nodes; this approach

mitigates the limitations of centralized architectures,

enabling improved performance, reduced latency and

enhanced fault tolerance.

The remainder of this paper is organized as follows.

Section II introduces the Simple Network Management

Protocol (SNMP), its evolution and its role in network

monitoring. It reviews related works on SNMP-based

monitoring, focusing on scalability challenges and

advancements in the field. Section III details the tools and

methodology for implementing a scalable SNMP monitoring

system with Apache Kafka, MySQL, and a multi-agent

architecture. Section IV presents the results, including

performance evaluations and scalability analysis. Section V

concludes the study and discusses potential enhancements for

optimizing distributed SNMP monitoring.

2. Simple Network Management Protocol

(SNMP)
The first version of the Simple Network Management

Protocol (SNMP) was first proposed in RFC1157 in May

1990 [16]. Today, SNMP agents are embedded in nearly all

network-enabled devices [10]. Designed for minimal agent

complexity, extensibility, and independence from specific

hosts or gateways, SNMP offers key advantages such as

compatibility, simplicity and a small agent footprint [1]. As

part of the TCP/IP protocol suite, SNMP is widely used for

monitoring network devices and data center equipment. In a

networked environment, each device with an SNMP agent

communicates status updates, enabling efficient monitoring

and management.

An SNMP monitoring system consists of three key

elements [9] shown in Fig.1:

• Devices/Agent station – These are network-enabled

hardware components that require monitoring. An

SNMP agent comes pre-installed on these devices to

facilitate communication.

• Agents – These are software programs running on the

monitored devices. Agents collect and store data about

system performance, status and resource usage and store

it in a management information base (MIB). They

respond to SNMP requests from the network

management station and send alerts when certain

thresholds or events occur.

• Management station – Also known as the SNMP

manager, this is a centralized system that communicates

with SNMP agents to collect and analyze network data.

It processes the received information, generates reports

and provides real-time monitoring and alerting

capabilities.

Fig. 1 The manager-agent model

SNMP operates at Layer 7 of the OSI model and uses

UDP port 161 for communication. Since it is primarily used

for monitoring, it does not require acknowledgements,

making UDP a suitable transport protocol. The basic

structure of an SNMP Protocol Data Unit (PDU) includes an

IP and UDP header, followed by the SNMP version,

community string, request ID, error status, error-index, and

variable bindings. Fig 2 below shows the basic structure of

an SNMP data PDU.

IP
header

UDP
header

version Community PDU-
type

request-
ID

error-
status

error-
index

variable
bindings

Fig. 2 Basic structure of the SNMP data PDU

There are three main versions of the SNMP protocol.

Version 1 ([RFC 1065, 1066, 1067, 1156]) had security and

authentication vulnerabilities, which were addressed in

Version 2 ([RFC 1213]). However, Versions 1 and 2 are not

interoperable due to differences in message formats and

protocol operations. Version 3 ([RFC 3411, 3418])

introduced remote configuration enhancements and improved

security mechanisms.

2.1. Network Monitoring

In today’s interconnected world, the need for efficient,

real-time network monitoring tools has become paramount.

Among the most commonly used tools in the industry are

Nagios, Zabbix, SNMP MIB Browser Android Tool and

Cacti.

2.1.1. Nagios

Nagios is an open-source software used to monitor the

availability of network devices and services. It functions as a

fault-monitoring tool that uses plugins to track various

network services such as HTTP, DNS, PING, and SNMP

[14]. Nagios is known for its flexibility and customizability,

allowing users to monitor both network services (e.g., HTTP,

SMTP) and host resources (e.g., CPU, memory). It also

supports SNMP-WALK for retrieving object identifiers

(OIDs), making it effective for querying and monitoring

device-specific information from device Management

Information Bases (MIBs).

SNMP

Emitting

Preforming

Management

Station

Agent
Station

MIB

Amwayi Harrison & Abraham Mutua / IJCOT, 15(1), 33-40, 2025

35

One of Nagios' key advantages is its open-source

version, Nagios Core, which makes it a cost-effective

solution for organizations with limited budgets. Its extensive

plugin library also enables users to customize monitoring

based on their specific needs, making it suitable for

enterprise-grade networks. However, Nagios has a steep

learning curve, particularly for beginners, and its

configuration can be complex, especially in large-scale

deployments.

From an SNMP data retrieval perspective, Nagios is

well-suited for small to medium-sized networks but may face

performance challenges in large-scale environments with

numerous Object Identifiers (OIDs) or devices. Its use of

periodic SNMP-WALKs allows efficient collection of MIB

data but does not support real-time monitoring. For real-time

SNMP event handling, integrating SNMP traps is

recommended.

2.1.2. Zabbix

Zabbix is an open-source tool that provides network and

application monitoring with support for SNMP and advanced

visualization features like graphs and maps. Its SNMP

capabilities include SNMP-WALK for bulk OID retrieval,

SNMP GET for targeted queries, and SNMP TRAPs for real-

time event monitoring [15].

A major advantage of Zabbix is that it is completely free

and open-source, making it accessible to organizations of all

sizes. It also benefits from active community support and

extensive documentation. However, the initial setup can be

time-consuming.

Zabbix is highly scalable when properly configured,

using techniques such as distributed monitoring with proxies

and database optimization. While SNMP-WALK enables

efficient MIB data retrieval, large-scale SNMP queries may

cause performance bottlenecks if the system is not tuned

effectively

2.1.3. SNMP MIB Browser Android Tool

The SNMP MIB Browser Android Tool is a lightweight,

portable SNMP monitoring solution. It supports SNMP GET,

SET, and WALK operations directly from a mobile device,

making it ideal for quick, on-the-go troubleshooting [17].

The tool also enables interactive browsing of MIBs for

device-specific OIDs, and its ability to perform SNMP-

WALK provides rapid access to multiple OIDs.

Its primary advantages lie in its convenience and ease of

use. It requires no additional hardware or complex setup, and

its user-friendly interface makes it accessible to many users.

However, its limitations include minimal scalability and lack

of historical data storage.

For SNMP MIB data retrieval, this tool is highly

effective for single-device troubleshooting but lacks

automation and scalability for enterprise environments. Since

this tool relies on manual SNMP-WALK operations, it is

unsuitable for large-scale or continuous monitoring scenarios

requiring automated polling and alerting.

2.1.4. Cacti

Cacti is an open-source network monitoring tool

specializing in graphing and visualization. It gathers data

from devices using SNMP and supports SNMP-WALK for

retrieving multiple OIDs simultaneously [9]. Leveraging

RRDTool, Cacti creates detailed and customizable graphs

that help visualize network performance metrics over time.

One of Cacti’s major strengths is its ability to create

highly customizable graphs and templates, making it an

excellent choice for organizations where visualization is a

priority. However, its focus on graphing limits its

functionality as a comprehensive monitoring tool, lacking

real-time alerting and event-driven monitoring capabilities.

While Cacti supports SNMP-WALK, its setup requires

manual configuration, which can be time-consuming in large

networks. Regarding SNMP MIB data retrieval, Cacti is

ideal for environments that prioritize visualization but lack

the automation of more feature-rich tools like Zabbix or

Nagios.

Despite the strengths of these tools, their limitations in

SNMP MIB data retrieval highlight the need for a more

scalable and efficient monitoring solution. While Nagios and

Zabbix offer flexibility, they can become resource-intensive

when handling large-scale SNMP queries. Cacti’s primary

focus on visualization makes it less effective as a

comprehensive monitoring solution, and the SNMP MIB

Browser Android Tool, while convenient, is inherently

limited to small-scale use cases. These challenges emphasize

the need for optimized SNMP data retrieval methods that

scale in large network monitoring scenarios.

3. Methodology
Building on the highlighted challenges of applications

that utilize SNMP for computer network monitoring, a new

model is proposed that leverages Apache Kafka to optimize

data collection times through a distributed architecture to

overcome the traditional bottlenecks. This model employs a

multi-agent design approach to enhance scalability and

efficiency.

3.1. System Architecture

The system was designed to handle large-scale,

distributed SNMP polling across multiple hosts while

ensuring real-time data streaming and storage. It leverages

Apache Kafka as the backbone for message communication

Amwayi Harrison & Abraham Mutua / IJCOT, 15(1), 33-40, 2025

36

between producers (polling agents) and consumers (data

processors), enabling seamless data flow. By incorporating

multithreading, the system maximizes the efficiency of

SNMP polling, while MySQL provides robust and structured

data storage.

To further optimize performance, the system employs

feature selection in its polling strategy, focusing on specific

high-priority MIB objects rather than relying on bulk

operations like snmpwalk. This targeted approach reduces

network bandwidth consumption and optimizes storage by

collecting only essential data.

Building on this foundation, the adopted approach

follows a four-layer design where the SNMP manager sends

poll requests to end devices across the network. Each layer

performs a specific function to achieve the overall objective

of efficiently retrieving Object Identifier (OID) parameters

from these monitored devices. The structure of these layers is

illustrated in Figure 3.

Fig. 3 multi-agent system architecture

3.1.1. Device Layer

This layer consists of SNMP-enabled end devices that

expose their metrics and statuses through Object Identifiers

(OIDs), providing a structured way to access specific data

points.

3.1.2. Data Collection Layer

The data collection layer is responsible for gathering

SNMP data from the end devices. Central to this layer is the

SNMP library and a Python script that performs SNMP GET

and GETNEXT operations to query various metrics from the

devices.

3.1.3. Message Queuing Layer

The message queuing layer serves as an intermediary

that decouples data collection from data processing,

enhancing the overall system's flexibility and scalability.

Utilizing Kafka, this layer efficiently manages the flow of

data collected (using topics) from the end devices.

3.1.4. Processing Layer

The processing layer is responsible for analysing and

transforming the data consumed, enabling valuable insights

and actionable intelligence. Central to this layer is the

consumer, which retrieves messages from the specified

Kafka topics.

3.2. System Design

The system design follows a producer-consumer model,

with Apache Kafka acting as the communication layer

between the SNMP polling process and the database

insertion process. The producer agents poll network devices

using SNMP and publish collected OID parameters to Kafka

topics, enabling real-time data streaming. Kafka serves as a

buffer and a message broker, ensuring scalability and fault

tolerance.

The consumer agents subscribe to these topics, process

the SNMP data and insert structured records into a MySQL

table, enabling efficient storage and retrieval. This decoupled

architecture optimizes performance by preventing direct

database dependencies, reducing network congestion and

improving the scalability of SNMP-based monitoring.

Fig. 4 high-level design breakdown

3.2.1. SNMP Polling Script and Device Inventory

The SNMP polling system serves as the core data

collection engine, efficiently retrieving SNMP data from

network devices. It operates in a continuous loop, where each

thread polls a specific host and MIB OID using the

Kafka-Based SNMP Polling System

SNMP Polling

Script
Kafka

Producer

(Producer)

Kafka

Consumer

(Consumer)

Apache Kafka Cluster (Message Broker Layer)

SNMP-enabled

Devices (SNMP

Agents)

Device

Inventory

MySQL

Database (Data

Storage Layer)

Data

Collection
Layer

Device

Layer

Message

Queuing

Layer

Processing

Layer

End

Device 1

MIB

Collector

Agent 1

Application

Consolidator

Agent

Collector

Agent 2
Collector

Agent 3

Collector

Agent 4

End

Device 2

MIB

End
Device 3

MIB

End
Device4

MIB

Amwayi Harrison & Abraham Mutua / IJCOT, 15(1), 33-40, 2025

37

EasySNMP library. The system calculates the turnaround

time for each poll to assess network performance. The

collected data—comprising the host, MIB OID, value, and

turnaround time—is serialized into JSON and published to

an Apache Kafka topic. Leveraging multithreading, the

system enables concurrent polling of multiple devices,

ensuring scalability and optimized data acquisition across

large networks.

A device inventory file defines hosts, SNMP

communities, MIBs, and polling frequencies, enabling a

modular and adaptable configuration approach. This design

offers:

• Dynamic Polling Configuration: Devices can be added

or removed by modifying the inventory file without

altering the core script.

• Host-Specific Polling: Each device can be assigned a

unique set of MIBs and polling frequencies, allowing for

targeted and flexible monitoring.

This design enhances the efficiency, scalability, and

adaptability of SNMP-based network monitoring, making it

suitable for large-scale distributed environments.

Algorithm 1: Producer
Require: Inventory file containing <Host, Frequency,

Community, Version, MIBs>

1. Load Inventory File
o Read device details from inventory.csv.

o Extract Host, Polling Frequency,
SNMP Community, SNMP Version,

and MIBs.

2. For Each Device in Inventory:

o Create a polling thread for each MIB

3. Polling Thread Execution (Parallel for Each MIB):

o Establish an SNMP session.

o Loop:

▪ Record Start Time.

▪ Query MIB using SNMP GET.

▪ Capture response and timestamps

(Date, Time).

▪ Compute Turnaround Time.

▪ Serialize data as JSON.

▪ Publish to Apache Kafka

(snmp_thread topic).

▪ Sleep for Polling Frequency.

4. Handle Errors:

o Log and retry on failure to avoid overwhelming

the SNMP agent.

Return: Real-time SNMP data stream sent to Kafka for further

processing.

3.2.2. Apache Kafka as a Message Broker

Apache Kafka serves as a distributed message broker,

facilitating scalable and fault-tolerant communication

between the SNMP polling script and the database insertion

process. By decoupling these components, Kafka ensures

efficient data flow and high availability in large-scale SNMP

monitoring systems.

Key Roles of Kafka in the System are:

• Reliable Message Distribution: Kafka transmits SNMP

poll results from producers to consumers via a dedicated

topic, ensuring data integrity.

• Scalability: The system accommodates increased data

loads by dynamically scaling consumer instances for

parallel processing.

• Fault Tolerance: Kafka’s message retention and offset

tracking mechanisms enable data recovery in the event

of failures, preventing information loss.

All polling results are published to a designated Kafka

topic in JSON format. Multiple consumers can subscribe to

this topic, enabling real-time processing and storage.

3.2.3. Kafka Consumer and MySQL Database Integration

The system employs an Apache Kafka consumer that

seamlessly integrates with a MySQL database to ensure

efficient processing and storage of SNMP polling results.

This setup enables real-time data ingestion.

The Kafka consumer continuously listens to a designated

topic, retrieving SNMP poll results as they arrive. Each

message is processed through the following steps:

• Message Decoding: The consumer parses the JSON

message, extracting key details such as the host, MIB

OID, value, and turnaround time.

• Data Validation: Before insertion, the data undergoes a

completeness check to ensure all required fields are

present and valid.

• Database Insertion: Once validated, the data is stored in

a MySQL database, where turnaround time serves as a

crucial metric for analyzing network performance.

The MySQL database acts as the system’s persistent

storage layer, organizing SNMP polling results into a

MySQL table. This structured format enables efficient data

retrieval and analysis, capturing essential parameters about

the SNMP host being monitored.

Algorithm 2: Consumer
Require: Kafka Broker, MySQL Database, SNMP Polling Data

 Initialize Kafka Consumer
 1.1. Set up consumer configurations (Kafka broker,

consumer group, offset reset).

 1.2. Subscribe to the snmp_thread topic.

 Consume Messages Continuously

 2.1. Poll Kafka for new messages with a 1-second timeout.

 2.2. If no message is received, continue polling.

 2.3. If an error occurs, handle and log the error.

 Process Received Messages

 3.1. Decode JSON message to extract SNMP poll data.

Amwayi Harrison & Abraham Mutua / IJCOT, 15(1), 33-40, 2025

38

 3.2. Validate required fields: <host, mib, value,
turnaround_time, poll_date, poll_time>.

 3.3. If essential fields are missing, log an error and discard the

message.

 Insert Data into MySQL

 4.1. Establish a connection to the MySQL database.

 4.2. Execute an INSERT query to store the SNMP poll

 4.3. Commit the transaction and close the connection.

 Handle Exceptions

 5.1. If JSON decoding fails, log and continue processing.

 5.2. If database insertion fails, log the error and retry if necessary.

 Repeat Process

 6.1. Continue consuming messages indefinitely.

 6.2. Gracefully close the Kafka consumer upon termination.

Return: SNMP poll results are stored in MySQL for further analysis

and reporting.

3.3. System Simulation

The system was deployed and tested in a controlled

environment designed to simulate real-world SNMP polling

scenarios to ensure reproducibility. The software stack

included Apache Kafka (latest version) for real-time data

streaming, MySQL 8.0 for structured data storage, and

Python 3.9 with the EasySNMP and Kafka-Python libraries

to facilitate SNMP polling and message handling.

The testbed comprised a mix of physical network

switches, desktop computers, and virtual Docker containers,

collectively simulating a diverse set of SNMP-enabled

network devices. The network topology was structured with

one SNMP manager overseeing 54 SNMP-enabled hosts,

ensuring a representative distribution of polling tasks. Both

SNMP v2c and SNMP v3 configurations were tested to

accommodate different SNMP implementations and

compatibility requirements.

3.4. System Validation

To ensure the reliability, stability and efficiency of the

SNMP monitoring system, a series of rigorous performance

tests were conducted. These evaluations aimed to identify

potential bottlenecks, validate system resilience under

varying load conditions and verify long-term sustainability.

The primary testing methodologies employed included Load

Testing, Simulated high-traffic scenarios to evaluate the

system’s ability to handle concurrent SNMP poll requests

without degradation in performance, Spike Testing,

Assessing the system’s response to sudden surges in polling

activity to ensure that the system could handle abrupt

increases in demand without failure, and Soak Testing;
Verified long-term reliability by running continuous polling

over extended periods, demonstrating that the system

maintained stability and avoided issues like memory leaks or

resource exhaustion. Each of these tests provided valuable

insights into the system’s behavior under different stress

conditions and helped refine its performance to meet

operational requirements.

Fig. 5 Spike test for 16 hosts

Fig. 6 Load and soak Testing results using 54 hosts over 21 hours

4. Results and Discussion
A subset of the SNMP polling data is stored in a

MySQL database table. The data includes:

• Host: The IP address or hostname of the device being

polled.

• MIB: The SNMP object identifier is being polled.

• Value: The returned value from the SNMP query.

• Turnaround Time: The time taken to retrieve the SNMP

data in milliseconds.

Table 1. Sample data from MySQL

Host MIB Value
Turnaround

time

Host-1 sysName.0 Server-A 1.19019

Host-1 sysLocation.0
Data

Center
1.02639

Host-2 sysName.0 Server-B 1.86555

Host-2 hrMemorySize.0 33518868 1.92642

Host-2 sysLocation.0 IT-Block 1.42853

Host-3 sysName.0
SNMP

host
1.58143

The turnaround time is an important metric that

measures the system’s polling performance, a critical factor

for monitoring large-scale networks.

Amwayi Harrison & Abraham Mutua / IJCOT, 15(1), 33-40, 2025

39

Fig. 7 The average turnaround time for SNMP polling across different

hosts

4.1. Latency Breakdown and Polling Rate Analysis

From Table 1 above, the latency breakdown for Host-1

shows that the sysName.0 MIB has a turnaround time of

1.19019 seconds, while sysLocation.0 has a slightly lower

turnaround time of 1.02639 seconds.

These variations may be attributed to differences in

network latency or the complexity of MIB data retrieval.

Given a polling interval of 5 seconds, the polling rate per

host is calculated as: -

Polling Rate (per host) = 1/Polling Interval(seconds) = 1/5

 = 0.2 polls/second.

With 54 hosts in the experiment, the total polling rate is:

Total Polling Rate = Polling Rate per Host × Number of

Hosts = 0.2 × 54 = 10.8 polls/second.

This indicates that the system handles 10.8 SNMP requests

per second across all monitored hosts.

4.2. Queue Length Estimation Using Little’s Law

To assess system performance, Little’s Law is applied,

L = λ × W

where:

L = average queue length

λ = total polling rate (10.8 polls/second)

W = average turnaround time (1.503 seconds)

L =1 0.8×1.503 =16.2 messages

This result suggests that, on average, 16.2 messages are

in the queue at any given time. The queue length aligns with

observed turnaround times, helping to identify thresholds for

performance tuning. If queue lengths grow excessively, it

could indicate system bottlenecks requiring optimization.

4.3. Decision Theory for Resource Allocation

Decision Theory can guide resource allocation based on

data criticality to enhance performance. For example, if

hrMemorySize.0 for Host-2 is critical, its higher turnaround

time (1.92642 seconds) suggests that prioritizing its

processing would be beneficial, hence employing

optimization strategies that may include:

• Dedicating Kafka partitions for critical MIBs

• Additional consumer threads for high-priority SNMP

data.

• Load balancing to minimize processing delays.

4.4. Limitations of the Study

 While the system effectively monitors and processes

SNMP data, certain limitations may impact its real-world

applicability:

• Fault Tolerance: Although Kafka ensures message

reliability, polling agents lack automatic failover

mechanisms. Agent failures could disrupt data

collection, requiring future enhancements like redundant

agents.

• Testing Environment: The system was evaluated in a

controlled setup, lacking real-world network challenges

such as latency fluctuations and intermittent

connectivity. Further testing in diverse production

environments is needed to assess scalability and

robustness.

5. Conclusion

This study successfully demonstrated the potential of

multi-agent-based systems in overcoming the limitations of

traditional network monitoring solutions. By leveraging a

decentralized and scalable architecture, the developed system

provides an efficient framework for managing the

complexity of modern network infrastructures. The use of

Apache Kafka as a message broker combined with a

multithreaded SNMP polling mechanism ensures real-time

data collection, fault tolerance and seamless integration with

storage and analytics platforms.

While the system has proven effective, there are several

areas for future research to enhance its performance and

adaptability. One key area is enhanced fault tolerance, where

future work could focus on implementing automatic failover

and agent recovery mechanisms. This would improve system

resilience, ensuring continuous operation even in the face of

failures.

Another promising direction is the integration of

advanced analytics, such as machine learning or AI-based

models, to predict failures, detect anomalies in network

behavior and enable proactive monitoring. This would

minimize human intervention while improving the system’s

ability to handle large-scale networks efficiently.

Overall, this research lays a strong foundation for future

advancements in network monitoring, highlighting the

potential of scalable, autonomous systems to meet the

growing demands of modern network environments.

Amwayi Harrison & Abraham Mutua / IJCOT, 15(1), 33-40, 2025

40

Funding Statement
The author funded this research and publication

independently without financial support from any external

organization or grant.

References
[1] Leena Aarikka-Stenroos, and Paavo Ritala, “Network Management in the Era of Ecosystems: Systematic Review and Management

Framework,” Industrial Marketing Management, vol. 67, pp. 23-36, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[2] Sisay Tadesse Arzo et al., “Multi-Agent-Based Traffic Prediction and Traffic Classification for Autonomic Network Management

Systems for Future Networks,” Future Internet, vol. 14, no. 8, pp. 1-23, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[3] Sisay Tadesse Arzo et al., “Multi-Agent Based Autonomic Network Management Architecture,” IEEE Transactions on Network and

Service Management, vol. 18, no. 3, pp. 3595-3618, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[4] Bilal Zaka, and Christian Safran, “Emerging Web-Based Learning Systems and Scalability Issues,” International Conference on

Computer Science and Software Engineering, Wuhan, China, pp. 889-892, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[5] D. Harrington, R. Presuhn, and B. Wijnen, “An architecture for Describing Simple Network Management Protocol (SNMP)

management frameworks (RFC 3411),” Internet Engineering Task Force (IETF), 2002. [Google Scholar] [Publisher Link]

[6] Hari T.S. Narayanan, Geetha Ilangovan, and Sumitra Narayanan, “Feasibility of SNMP OID Compression,” Journal of King Saud

University - Computer and Information Sciences, vol. 25, no. 1, pp. 35-42, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[7] Tobias Hossfeld, Poul E. Heegaard, and Wolfgang Kellerer, “Comparing the Scalability of Communication Networks and Systems,”

IEEE Access, vol. 11, pp. 101474-101497, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[8] Oliver Michel, and Eric Keller, “SDN in Wide-Area Networks: A Survey,” Proceedings of the 2017 Fourth International Conference on

Software Defined Systems (SDS), Valencia, Spain, pp. 37-42, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[9] Ronald Paucar Curasma, and Herminio Paucar Curasma, “Assessment and Proposal of a Network Monitoring System Based on Free

Software,” 2020 IEEE Engineering International Research Conference (EIRCON), Lima, Peru, pp. 1-4, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[10] Pang-Wei Tsai et al., “Network Monitoring in Software-Defined Networking: A Review,” IEEE Systems Journal, vol. 12, no. 4, pp.

3958-3969, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[11] Fung Po Tso, Simon Jouet, and Dimitrios P. Pezaros, “Network and Server Resource Management Strategies for Data Centre

Infrastructures: A Survey,” Computer Networks, vol. 106, pp. 209-225, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[12] S. Waldbusser, “Management Information Base (MIB) for the Simple Network Management Protocol (SNMP) (RFC 3418),” Internet

Engineering Task Force (IETF), 2002. [CrossRef] [Google Scholar] [Publisher Link]

[13] J. West, Data Communication and Computer Networks: A Business User's Approach, Cengage Learning, 2022. [Online]. Available:

https://www.tamuct.edu/syllabi/docs/2023_Summer/20230660157.pdf

[14] Wojciech Kocjan, Learning Nagios 3.0. Birmingham, UK: Packet Publishing Ltd., 2008. [Google Scholar] [Publisher Link]

[15] Yang Guo Shan et al., “Research on Monitoring of Information Equipment Based on Zabbix for Power Supply Company,” 3rd

International Conference on Applied Machine Learning, Changsha, China, pp. 487-491, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[16] J. Case et al., “A Simple Network Management Protocol, Request for Comments (RFC) 1157,” Internet Engineering Task Force (IETF),

1990. [Google Scholar] [Publisher Link]

[17] Fernando Hidalgo, and Eric Gamess, “Integrating Android Devices into Network Management Systems based on SNMP,” International

Journal of Advanced Computer Science and Applications, vol. 5, no. 5, pp. 1-8, 2014. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.indmarman.2017.08.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Network+Management+in+the+Era+of+Ecosystems%3A+Systematic+Review+and+Management+Framework&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0019850117306545
https://doi.org/10.3390/fi14080230
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-Agent-Based+Traffic+Prediction+and+Traffic+Classification+for+Autonomic+Network+Management+Systems+for+Future+Networks&btnG=
https://www.mdpi.com/1999-5903/14/8/230
https://doi.org/10.1109/TNSM.2021.3059752
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-agent+based+autonomic+network+management+architecture&btnG=
https://ieeexplore.ieee.org/abstract/document/9354865
https://doi.org/10.1109/CSSE.2008.187
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Emerging+Web-Based+Learning+Systems+and+Scalability+Issues&btnG=
https://ieeexplore.ieee.org/abstract/document/4723047
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+architecture+for+describing+Simple+Network+Management+Protocol+%28SNMP%29+management+frameworks+%28RFC+3411%29&btnG=
https://datatracker.ietf.org/doc/rfc3411/
https://doi.org/10.1016/j.jksuci.2012.05.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Feasibility+of+SNMP+OID+compression&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157812000316
https://doi.org/10.1109/ACCESS.2023.3314201
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparing+the+Scalability+of+Communication+Networks+and+Systems&btnG=
https://ieeexplore.ieee.org/abstract/document/10247010
https://doi.org/10.1109/SDS.2017.7939138
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SDN+in+wide-area+networks%3A+A+survey&btnG=
https://ieeexplore.ieee.org/abstract/document/7939138
https://doi.org/10.1109/EIRCON51178.2020.9254047
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Assessment+and+proposal+of+a+network+monitoring+system+based+on+free+software&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Assessment+and+proposal+of+a+network+monitoring+system+based+on+free+software&btnG=
https://ieeexplore.ieee.org/abstract/document/9254047
https://doi.org/10.1109/JSYST.2018.2798060
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Network+monitoring+in+software-defined+networking%3A+A+review&btnG=
https://ieeexplore.ieee.org/abstract/document/8291608
https://doi.org/10.1016/j.comnet.2016.07.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Network+and+server+resource+management+strategies+for+data+centre+infrastructures%3A+A+survey&btnG=
https://www.sciencedirect.com/science/article/pii/S1389128616302298
https://doi.org/10.17487/RFC3418
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Management+information+base+%28MIB%29+for+the+Simple+Network+Management+Protocol+%28SNMP%29+%28RFC+3418%29&btnG=
https://www.rfc-editor.org/info/rfc3418
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Learning+Nagios+3.0.+Birmingham&btnG=
https://www.google.co.in/books/edition/Learning_Nagios_3_0/Pessksf55WQC?hl=en&gbpv=0
https://doi.org/10.1109/ICAML54311.2021.00108
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+on+Monitoring+of+Information+Equipment+Based+on+Zabbix+for+Power+Supply+Company&btnG=
https://ieeexplore.ieee.org/abstract/document/9711964
https://ieeexplore.ieee.org/abstract/document/9711964
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Simple+Network+Management+Protocol&btnG=
https://datatracker.ietf.org/doc/rfc1157/
https://dx.doi.org/10.14569/IJACSA.2014.050501
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Integrating+Android+devices+into+network+management+systems+based+on+SNMP&btnG=
https://thesai.org/Publications/ViewPaper?Volume=5&Issue=5&Code=IJACSA&SerialNo=1

