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Abstract—Continuously growing size and number of 

databases in a variety of domains has boosted development 

of numerous data mining methods during the last decade. 

There is an increasing requirement to discover associations 

and relations among large and uncertain databases, which 

may be tackled by association rule mining. Two main 

challenges exist when designing a solution for event 

derivation under uncertainty. First, event derivation should 

scale under heavy loads of incoming events. Second, the 

associated probabilities must be correctly captured and 

represented. Current work proposes a solution to both 

problems by introducing a novel generic and formal 

mechanism and framework for managing event derivation 

under uncertainty. To solve this problem, the proposed 

system uses Genetic Network Programming (GNP) for event 

rule derivation. A method for association rule mining from 

large, heterogeneous and uncertain databases is proposed 

using an evolutionary method named Genetic Network 

Programming (GNP). Some other association rule mining 

methods cannot handle uncertain data directly, they are 

inapplicable or computational inefficient under such a 

model. GNP utilizes direct graph structure and is able to 

extract rules without generating frequent item sets to 

improve mining efficiency. 
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I. INTRODUCTION 

In recent years, there has been a growing need for 

event driven (or active) systems, i.e., systems that 

react automatically to events. The earliest event-driven 

systems in the database realm impacted both industry 

(triggers) and academia (view materialization). New 

applications in areas such as Business Process 

Management (BPM), sensor networks, security 

applications (e.g., bio hazards and computer security), 

engineering applications (e.g., forecasting networked 

resources availability); and scientific applications 

(e.g., utilization of grid resources) all require 

sophisticated mechanisms to manage and react to 

events. 

Some events are generated externally and deliver 

data across distributed systems, while other events and 

their related data need to be derived by the system 

itself, based on other events and some derivation 

mechanism. In many cases, such derivation is carried 

out based on a set of rules. Carrying out such event 

derivation is hampered by the gap between the actual 

occurrences of events, to which the system must 

respond, and the ability of event-driven systems to 

accurately generate events. This gap results in 

uncertainty and may be attributed to unreliable event 

sources (e.g., an inaccurate sensor reading or an 

unreliable Web service), an unreliable network (e.g., 

packet loss at routers), or the inability to determine 

with certainty whether a phenomenon has actually 

occurred given the available information sources. 

Therefore, a clear trade-off exists between deriving 

events with certainty, using full and complete 

information, and the need to provide a quick 

notification of newly revealed events. Both responding 

to a threat without sufficient evidence and waiting too 

long to respond may have undesirable consequences. 

One way of managing the gap between actual events 

and event notifications is to explicitly handle 

uncertainty. This could be done by modeling events 

uncertainty as a probability associated with each 

event, whether such events are generated externally or 

derived. However, a major challenge in such explicit 

management of events’ uncertainty is that rule-based 

systems need to process multiple rules with multiple 

event sources. Correctly calculating event 

probabilities while taking into account various types 

of uncertainty is not trivial. Clearly, correct 

quantification of the probability of derived events 

serves as an important tool for decision making. Event 

generation under uncertainty should therefore be 

accompanied with an appropriate mechanism for 

probability computation. Another major challenge, 

related to the need to enable timely response to events, 

is efficient event derivation, sometimes under a heavy 

load of incoming events from various sources. Event 

derivation should also scale for a large number of 

(possibly interrelated) rules and complex rules that 

involve several sources of evidence. Clearly, a brute 

force solution in which the arrival of a new event is 

evaluated against all possible rules does not scale, as it 

may involve an exponential number of evaluations 

(depending on the amount of dependency among 

rules). To illustrate this point, consider a natural way 

of interpreting uncertain events by assigning an 

explicit probability to each possible subset of events. 

Clearly, such explicit representation is practically 

infeasible. Therefore, our main goal is to provide an 
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efficient and accurate (yet generic) mechanism for 

reasoning with uncertain events. 

 

II. RELATED WORK 

Complex event processing is supported by systems 

from various domains. These include ODE [1], Snoop 

[2], and others [3] for active databases and the 

Situation Manager Rule Language [4], a general 

purpose event language. 

The majority of existing models do not support 

event uncertainty. 

As a result, solutions adopted in the active 

database literature, such as the Rete network algorithm 

[5] presented by C.L Forgy fail to provide an adequate 

solution to the problem, since they cannot estimate 

probabilities. 

In [6] Shmueli and Fienberg demonstrated that 

over-the counter and pharmacy medication sales, calls 

to nurse hotlines, school absence records, and 

complaints of individuals entering hospital emergency 

departments can all serve as indicators of disease 

outbreak. These measures can be collected by 

querying local stores, physician databases, or data 

warehouses. The presentation of the data as a time 

series illustrates the problem of uncertainty in event 

information. 

In [7] J. Pearl presented a common mechanism for 

handling uncertainty reasoning is a Bayesian network 

a method for graphically representing a probability 

space, using probabilistic independencies to enable a 

relatively sparse representation of the probability 

space. Qualitative knowledge of variable 

interrelationships) is represented graphically, while 

quantitative knowledge of specific probabilities is 

represented as Conditional Probability Tables (CPTs). 

The network is, in most applications, manually 

constructed for the problem at hand. 

In [8] Breese et.al presented Knowledge Based 

Model Construction (KBMC) paradigm which 

separates uncertain knowledge representation from 

inference, which is usually carried out by transforming 

the knowledge into a Bayesian network that can model 

knowledge at the propositional logic level knowledge. 

In [9] Kersting and Readt follow the KBMC 

paradigm. In this work, the quantitative knowledge, as 

well as the quantitative deterministic knowledge, is 

represented as a set of Horn clauses and the qualitative 

probabilistic knowledge is captured as a set of CPTs. 

The work done in [10] by Cowie.et.al used for 

processing complex events in specific domains tailor 

probabilistic models or direct statistical models (e.g., 

regression) to the application. No general framework 

was defined there to derive uncertain events, a gap we 

strive to fill in this work. . 

 

 

 

 

 

 

III. PROPOSED WORK 

Priority rules are referred as Queue-based. Instead 

of guaranteeing optimal solution, these techniques aim 

to find reasonable solutions in a relatively short time 

used for solving scheduling problem based on 

backfilling techniques. The purpose of backfilling is to 

improve system utilization of scheduler that used First 

Come First Serve (FCFS). Although FCFS is a simple 

policy and have been widely used, it suffers from the 

low system utilization. This happens because there is a 

gap between two jobs that make the resource idle. 

Backfilling improves resource utilization by allowing 

small job to fill in those gaps. Job which is lower in 

the queue is moved to the idle machines without 

delaying the execution of the job at the top of the 

queue. 

 

Biggest Hole (BH) strategy is to make a large 

process faster. Large process is the process that 

usually involved many calculations and huge data that 

consumes a lot of time. While traditional backfilling 

intends to fill the holes with smaller jobs and Earliest 

Gap Earliest Deadline First (EG-EDF) fill the first 

holes with possible jobs that can fix in, Biggest Hole 

search for the biggest holes in the queue and match 

them with any jobs that can fix in. In the case of EG-

EDF, if the hole or gap does not match the jobs or too 

small for the job, the system has to search again and 

the possibility of the candidate gap to be lost are 

higher because as time pass by, the candidate gap can 

be shrinks smaller or even lost from the system. This 

is not happening with BH technique. BH-PR carries 

out the same procedure as EG-PR algorithms. Instead 

of accepting the earliest gap in the queue, BH-PR 

search for the biggest gap in schedule at that particular 

time. This is carried out by sorting the gap 

decreasingly based on the gap size. 

The system architecture of the proposed 

framework is shown in fig 1: 



International Journal of Computer & Organization Trends –Volume 4 Issue 3 May to June 2014 

ISSN: 2249-2593                       http://www.ijcotjournal.org                         Page 74 

 
 

Figure 1: Proposed system achitecture 

 

 

IV. METHODOLOGY 

 

A. IMPLEMENTATION OF PROBABILISTIC 

EVENT MODEL 

 

An event is an actual occurrence or happening that 

is significant (falls within a domain of discourse), and 

atomic (it either occurs or not). This definition, while 

limited, suits our specific needs. Data can be 

associated with an event occurrence. Some data types 

are common to all events (e.g., occurrence time), 

while others are specific (e.g., sales in an OtCCMS 

event). The data items associated with an event are 

termed attributes. Derived events in our model are 

inferred using rules. A rule defines how many new 

events (or EIDs) should be derived and helps calculate 

their attributes and probabilities. Intuitively, assume 

that the set of possible event histories prior to 

evaluating rule r is H. Moreover, assume that the 

actual event history is known to be some h 2 H.  

A major novelty of our framework is in the support of 

the calculation of probabilities associated with derived 

events, at a given time point t. At time t, the set of 

possible derived events is determined by the explicit 

EIDs known at t (together with the defined rules). 

Therefore, since different sets of explicit EIDs may be 

available at different time points, a (possibly) different 

probability space needs to be defined for each time 

point separately. 

 

B. IMPLEMENTATION OF SELECTABILITY 

 

 Selectability, as defined by function sr in a rule 

specification, plays an important role in event 

derivation, in both the deterministic and the uncertain 

settings. First, it defines which events are relevant to 

derivation according to rule r—an important semantic 

distinction. Just by analyzing the definition of sr it is 

clear to a human which events are defined as being 

relevant to derivation according to r, and which events 

are ignored in this derivation. Selectability 

significantly influences the performance of the 

inference algorithm. 

 

 As in the uncertain setting derivation is carried out on 

EIDs, algorithms are required to compute which EIDs, 

from a given system event history H, are selectable. 

Deciding whether an EID E is selectable by rule r 

may, by itself, incur significant computational effort. 

This is because, according to Definition 1, 

selectability depends on the possible event histories in 

which the event corresponding to E participates. 

Algorithm 1. calculateSelectableEIDs(H,r) 

1. selectableEIDs← Φ 

2. esEIDs← Φ 

3. for all E 𝜖 H 

4. for all e 𝜖 E 

5. if esr  ( e ) ={{e}} 

6. esEIDs     ←esEIDs ⋃ E 

7. end if  

8. end for  

9. end for 

10. for all  h 𝜖 esEIDs 

11. for all e ∈ sr(h) 

12. E     ←getCorrespondingEID(e) 

13. selectableEIDs    ←  selectableEIDs ⋃ E 

14.  end for  

15. End for 

16.  Return  selectableEIDs 

 

To calculate the complexity of Algorithm 1, we will 

denote by n the number of EIDs representing the 

system event history H and by m the size of the state 

space of the largest EID. Using this notation, the 

complexity of lines 1-9 in Algorithm 1 is O(mn), 

polynomial in the number of EIDs and the state space 

size of the EIDs. 

 

C. PROBABILISTIC EVENT DERIVATION 

PROCESS 

 

 In this module, we provide a high level 

description of an algorithm for uncertain derivation of 

events. In a nutshell, the proposed algorithm works as 

follows: Given a set of rules and a set of EIDs at time 

t, we automatically construct a Bayesian network that 
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correctly represents the probability space at t. 

Probabilities of new events are then computed using 

standard Bayesian network methods. 

Two important properties that must be maintained in 

any algorithm for event derivation (both in the 

deterministic and uncertain setting), are determinism 

and termination. Determinism ensures that for the 

same set of explicit EIDs, the algorithm outputs the 

same set of derived EIDs. Termination ensures that the 

derivation algorithm terminates. To ensure 

determinism and termination, we enforce rule ordering 

such that 1) rules are triggered according to the 

defined order, 2) rule ordering is independent of event 

histories, and 3) an event may trigger a rule at most 

once. 

 

 The last requirement ensures termination. 

The second requirement ensures determinism. In our 

algorithm, the Bayesian network is constructed from 

explicit events and rule definitions that describe the 

desired probability space. With a new event arrival we 

traverse the rules according to the predefined ordering, 

and for each rule r, a Bayesian network segment (i.e., 

a segment with relevant nodes, edges, and CPTs) is 

created, satisfying the rule semantics, and utilizing 

probabilistic independencies. After carrying out these 

steps for all rules, the network is complete, and the 

probability space at time point t is calculated based on 

the probability space described by the entire network. 

It was shown in that the algorithm is exponential in 

the number of events and polynomial in the number of 

possible worlds.  

 

 The sampling algorithm described in the 

previous section generates a Bayesian network from 

which the exact probability of each event can be 

computed. Given an existing Bayesian network, it is 

also efficiently possible to approximate the probability 

of an event occurrence using a sampling algorithm 

(several such algorithms are known), as follows: 

Given a Bayesian network with nodes E1,….En. 

we calculate an approximation for the probability that 

Ei={occurred} by first generating m ndependent 

samples using a Bayesian network sampling 

algorithm. Then,  

Pr(Ei={occurred}) is approximated by 
#𝐸𝑖={𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 } 

𝑀
, 

where #Ei={occurred} the number of samples in 

which Ei has received the value is occurred. 

 

Algorithm 2. RuleSamp, triggered by a new 

event arrival 

1. h← Φ 

2. for all E 𝜖 𝐻0 

3. e     ←probSampling ( E ) 

4.   h← h⋃ e 

5. End for  

6. Order ← 𝑜𝑏𝑡𝑎𝑖𝑛𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑖𝑛𝑔𝑂𝑟𝑑𝑒𝑟 

7. While order ≠ 𝛷 

8. r← deleteNextRule(order) 

9. h’← Φ 

10. selEvents ← SR(h) 

11. if pr(selEvents) = true 

12. assocT uples ← ar(sel Events) 

13. for all tuple ∈ assocT uples 

14. { s1,….sn}← mr(tuple) 

15. prob← 𝑝𝑟𝑟 ( tuple, mr(tuple)) 

16. probsamp← 𝑠𝑎𝑚𝑝𝑙𝑒𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑟𝑜𝑏) 

17. if probsamp=1 

18.  e←{occurred,s1….sn} 

19. Else 

20. e←{notOccurred} 

21. end if 

22. h←h’⋃{e} 

23. end for  

24. end if  

25. h←h⋃h’ 

26. end while 

27. return h 

 

 

D. EVENT RULE DERIVATION USING 

GENETIC NETWORK PROGRAMMING (GNP) 

 

In this proposed system, Genetic Network 

Programming (GNP) is used for event rule derivation. 

Genetic Network Programming is one of the 

evolutionary optimization algorithms, which evolves 

directed graph structures as solutions instead of strings 

(Genetic Algorithms) or trees.  The main aim of 

developing GNP was to deal with dynamic 

environments efficiently by using the higher 

expression ability of graph structures. 

 

The basic structure of GNP is shown in Fig. The 

graph structure is composed of three types of nodes 

that are connected on a network structure: a start node, 

judgment nodes (diamonds), and processing nodes 

(circles). Judgment nodes are the set of J1, J2, . . . , Jp, 

which work as if- then conditional decision functions 

and they return judgment results for assigned inputs 

and determine the next node to be executed. 

Processing nodes are the set of P1, P2, . . . , Pq, which 

work as action/processing functions. The start node 

determines the first node to be executed. The nodes 

transition begins from the start node; however there 

are no terminal nodes. After the start node is executed, 

the next node is determined according to the node’s 

connections and judgment results. 

.  

 

V. EXPERIMENTAL RESULTS 

The proposed method can be evaluated based on 

number of events for precision analysis. The effect on 

performance is observed by drawing the log (base 10) 

of the actual number of events processed per second in 

various cases, where the difference between these 

cases are the percentage of events relevant to event 

derivation.  
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The graph shows the performance difference both 

in the deterministic case and proposed method as 

follows. 

 

Figure 2: Event  rate Comparision 

 

The above graph in figure shows that the precision 

analysis for event rate. In graph Event rate in seconds 

are represented in Y-axis and precision beta value is 

represented in X-axis. Beta value represents the 

confidence width of values, 0.1, 0.2, and 0.3 

respectively. Thus the proposed work gives higher 

event rate per second for increasing beta value when 

compare with the existing system of work. 

. 

 

VI. CONCLUSION 

Thus two main challenges exist when designing a 

solution for event derivation under uncertainty. First, 

event derivation should scale under heavy loads of 

incoming events. Second, the associated probabilities 

must be correctly captured and represented. We 

present a solution to both problems by introducing a 

novel generic and formal mechanism and framework 

for managing event derivation under uncertainty. To 

solve this problem, in this system, Genetic Network 

Programming (GNP) is used for event rule derivation. 

A method for association rule mining from large, 

heterogeneous and uncertain databases is proposed 

using an evolutionary method named Genetic Network 

Programming (GNP). Some other association rule 

mining methods cannot handle uncertain data directly, 

they are inapplicable or computational inefficient 

under such a model. GNP uses direct graph structure 

and is able to extract rules without generating frequent 

item sets to improve mining efficiency. 
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