
International Journal of Computer & Organization Trends –Volume 4 Issue 3 May to June 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 72

A Novel Event Rule Derivation for Processing

Uncertain Data Events using Genetic Network

Programming
M. Sivasankari M.C.A

1

1
Mphil.Scholar, Department of Computer Science, KG College of Arts and Science,Coimbatore. Tamil nadu,

India

Abstract—Continuously growing size and number of

databases in a variety of domains has boosted development

of numerous data mining methods during the last decade.

There is an increasing requirement to discover associations

and relations among large and uncertain databases, which

may be tackled by association rule mining. Two main

challenges exist when designing a solution for event

derivation under uncertainty. First, event derivation should

scale under heavy loads of incoming events. Second, the

associated probabilities must be correctly captured and

represented. Current work proposes a solution to both

problems by introducing a novel generic and formal

mechanism and framework for managing event derivation

under uncertainty. To solve this problem, the proposed

system uses Genetic Network Programming (GNP) for event

rule derivation. A method for association rule mining from

large, heterogeneous and uncertain databases is proposed

using an evolutionary method named Genetic Network

Programming (GNP). Some other association rule mining

methods cannot handle uncertain data directly, they are

inapplicable or computational inefficient under such a

model. GNP utilizes direct graph structure and is able to

extract rules without generating frequent item sets to

improve mining efficiency.

Keywords— Complex event processing, rule-based

reasoning with uncertain information, Genetic Network

Programming

I. INTRODUCTION

In recent years, there has been a growing need for

event driven (or active) systems, i.e., systems that

react automatically to events. The earliest event-driven

systems in the database realm impacted both industry

(triggers) and academia (view materialization). New

applications in areas such as Business Process

Management (BPM), sensor networks, security

applications (e.g., bio hazards and computer security),

engineering applications (e.g., forecasting networked

resources availability); and scientific applications

(e.g., utilization of grid resources) all require

sophisticated mechanisms to manage and react to

events.

Some events are generated externally and deliver

data across distributed systems, while other events and

their related data need to be derived by the system

itself, based on other events and some derivation

mechanism. In many cases, such derivation is carried

out based on a set of rules. Carrying out such event

derivation is hampered by the gap between the actual

occurrences of events, to which the system must

respond, and the ability of event-driven systems to

accurately generate events. This gap results in

uncertainty and may be attributed to unreliable event

sources (e.g., an inaccurate sensor reading or an

unreliable Web service), an unreliable network (e.g.,

packet loss at routers), or the inability to determine

with certainty whether a phenomenon has actually

occurred given the available information sources.

Therefore, a clear trade-off exists between deriving

events with certainty, using full and complete

information, and the need to provide a quick

notification of newly revealed events. Both responding

to a threat without sufficient evidence and waiting too

long to respond may have undesirable consequences.

One way of managing the gap between actual events

and event notifications is to explicitly handle

uncertainty. This could be done by modeling events

uncertainty as a probability associated with each

event, whether such events are generated externally or

derived. However, a major challenge in such explicit

management of events’ uncertainty is that rule-based

systems need to process multiple rules with multiple

event sources. Correctly calculating event

probabilities while taking into account various types

of uncertainty is not trivial. Clearly, correct

quantification of the probability of derived events

serves as an important tool for decision making. Event

generation under uncertainty should therefore be

accompanied with an appropriate mechanism for

probability computation. Another major challenge,

related to the need to enable timely response to events,

is efficient event derivation, sometimes under a heavy

load of incoming events from various sources. Event

derivation should also scale for a large number of

(possibly interrelated) rules and complex rules that

involve several sources of evidence. Clearly, a brute

force solution in which the arrival of a new event is

evaluated against all possible rules does not scale, as it

may involve an exponential number of evaluations

(depending on the amount of dependency among

rules). To illustrate this point, consider a natural way

of interpreting uncertain events by assigning an

explicit probability to each possible subset of events.

Clearly, such explicit representation is practically

infeasible. Therefore, our main goal is to provide an

International Journal of Computer & Organization Trends –Volume 4 Issue 3 May to June 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 73

efficient and accurate (yet generic) mechanism for

reasoning with uncertain events.

II. RELATED WORK

Complex event processing is supported by systems

from various domains. These include ODE [1], Snoop

[2], and others [3] for active databases and the

Situation Manager Rule Language [4], a general

purpose event language.

The majority of existing models do not support

event uncertainty.

As a result, solutions adopted in the active

database literature, such as the Rete network algorithm

[5] presented by C.L Forgy fail to provide an adequate

solution to the problem, since they cannot estimate

probabilities.

In [6] Shmueli and Fienberg demonstrated that

over-the counter and pharmacy medication sales, calls

to nurse hotlines, school absence records, and

complaints of individuals entering hospital emergency

departments can all serve as indicators of disease

outbreak. These measures can be collected by

querying local stores, physician databases, or data

warehouses. The presentation of the data as a time

series illustrates the problem of uncertainty in event

information.

In [7] J. Pearl presented a common mechanism for

handling uncertainty reasoning is a Bayesian network

a method for graphically representing a probability

space, using probabilistic independencies to enable a

relatively sparse representation of the probability

space. Qualitative knowledge of variable

interrelationships) is represented graphically, while

quantitative knowledge of specific probabilities is

represented as Conditional Probability Tables (CPTs).

The network is, in most applications, manually

constructed for the problem at hand.

In [8] Breese et.al presented Knowledge Based

Model Construction (KBMC) paradigm which

separates uncertain knowledge representation from

inference, which is usually carried out by transforming

the knowledge into a Bayesian network that can model

knowledge at the propositional logic level knowledge.

In [9] Kersting and Readt follow the KBMC

paradigm. In this work, the quantitative knowledge, as

well as the quantitative deterministic knowledge, is

represented as a set of Horn clauses and the qualitative

probabilistic knowledge is captured as a set of CPTs.

The work done in [10] by Cowie.et.al used for

processing complex events in specific domains tailor

probabilistic models or direct statistical models (e.g.,

regression) to the application. No general framework

was defined there to derive uncertain events, a gap we

strive to fill in this work. .

III. PROPOSED WORK

Priority rules are referred as Queue-based. Instead

of guaranteeing optimal solution, these techniques aim

to find reasonable solutions in a relatively short time

used for solving scheduling problem based on

backfilling techniques. The purpose of backfilling is to

improve system utilization of scheduler that used First

Come First Serve (FCFS). Although FCFS is a simple

policy and have been widely used, it suffers from the

low system utilization. This happens because there is a

gap between two jobs that make the resource idle.

Backfilling improves resource utilization by allowing

small job to fill in those gaps. Job which is lower in

the queue is moved to the idle machines without

delaying the execution of the job at the top of the

queue.

Biggest Hole (BH) strategy is to make a large

process faster. Large process is the process that

usually involved many calculations and huge data that

consumes a lot of time. While traditional backfilling

intends to fill the holes with smaller jobs and Earliest

Gap Earliest Deadline First (EG-EDF) fill the first

holes with possible jobs that can fix in, Biggest Hole

search for the biggest holes in the queue and match

them with any jobs that can fix in. In the case of EG-

EDF, if the hole or gap does not match the jobs or too

small for the job, the system has to search again and

the possibility of the candidate gap to be lost are

higher because as time pass by, the candidate gap can

be shrinks smaller or even lost from the system. This

is not happening with BH technique. BH-PR carries

out the same procedure as EG-PR algorithms. Instead

of accepting the earliest gap in the queue, BH-PR

search for the biggest gap in schedule at that particular

time. This is carried out by sorting the gap

decreasingly based on the gap size.

The system architecture of the proposed

framework is shown in fig 1:

International Journal of Computer & Organization Trends –Volume 4 Issue 3 May to June 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 74

Figure 1: Proposed system achitecture

IV. METHODOLOGY

A. IMPLEMENTATION OF PROBABILISTIC

EVENT MODEL

An event is an actual occurrence or happening that

is significant (falls within a domain of discourse), and

atomic (it either occurs or not). This definition, while

limited, suits our specific needs. Data can be

associated with an event occurrence. Some data types

are common to all events (e.g., occurrence time),

while others are specific (e.g., sales in an OtCCMS

event). The data items associated with an event are

termed attributes. Derived events in our model are

inferred using rules. A rule defines how many new

events (or EIDs) should be derived and helps calculate

their attributes and probabilities. Intuitively, assume

that the set of possible event histories prior to

evaluating rule r is H. Moreover, assume that the

actual event history is known to be some h 2 H.

A major novelty of our framework is in the support of

the calculation of probabilities associated with derived

events, at a given time point t. At time t, the set of

possible derived events is determined by the explicit

EIDs known at t (together with the defined rules).

Therefore, since different sets of explicit EIDs may be

available at different time points, a (possibly) different

probability space needs to be defined for each time

point separately.

B. IMPLEMENTATION OF SELECTABILITY

 Selectability, as defined by function sr in a rule

specification, plays an important role in event

derivation, in both the deterministic and the uncertain

settings. First, it defines which events are relevant to

derivation according to rule r—an important semantic

distinction. Just by analyzing the definition of sr it is

clear to a human which events are defined as being

relevant to derivation according to r, and which events

are ignored in this derivation. Selectability

significantly influences the performance of the

inference algorithm.

 As in the uncertain setting derivation is carried out on

EIDs, algorithms are required to compute which EIDs,

from a given system event history H, are selectable.

Deciding whether an EID E is selectable by rule r

may, by itself, incur significant computational effort.

This is because, according to Definition 1,

selectability depends on the possible event histories in

which the event corresponding to E participates.

Algorithm 1. calculateSelectableEIDs(H,r)

1. selectableEIDs← Φ

2. esEIDs← Φ

3. for all E 𝜖 H

4. for all e 𝜖 E

5. if esr (e) ={{e}}

6. esEIDs ←esEIDs ⋃ E

7. end if

8. end for

9. end for

10. for all h 𝜖 esEIDs

11. for all e ∈ sr(h)

12. E ←getCorrespondingEID(e)

13. selectableEIDs ← selectableEIDs ⋃ E

14. end for

15. End for

16. Return selectableEIDs

To calculate the complexity of Algorithm 1, we will

denote by n the number of EIDs representing the

system event history H and by m the size of the state

space of the largest EID. Using this notation, the

complexity of lines 1-9 in Algorithm 1 is O(mn),

polynomial in the number of EIDs and the state space

size of the EIDs.

C. PROBABILISTIC EVENT DERIVATION

PROCESS

 In this module, we provide a high level

description of an algorithm for uncertain derivation of

events. In a nutshell, the proposed algorithm works as

follows: Given a set of rules and a set of EIDs at time

t, we automatically construct a Bayesian network that

Input data set

Using Genetic

Network

Programming
(GNP)

Event rule derivation

Probabilistic event

derivation process

Implementation of

Selectability

Implementation of

Probabilistic event

model

Output rule result

Performance

evaluation

International Journal of Computer & Organization Trends –Volume 4 Issue 3 May to June 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 75

correctly represents the probability space at t.

Probabilities of new events are then computed using

standard Bayesian network methods.

Two important properties that must be maintained in

any algorithm for event derivation (both in the

deterministic and uncertain setting), are determinism

and termination. Determinism ensures that for the

same set of explicit EIDs, the algorithm outputs the

same set of derived EIDs. Termination ensures that the

derivation algorithm terminates. To ensure

determinism and termination, we enforce rule ordering

such that 1) rules are triggered according to the

defined order, 2) rule ordering is independent of event

histories, and 3) an event may trigger a rule at most

once.

 The last requirement ensures termination.

The second requirement ensures determinism. In our

algorithm, the Bayesian network is constructed from

explicit events and rule definitions that describe the

desired probability space. With a new event arrival we

traverse the rules according to the predefined ordering,

and for each rule r, a Bayesian network segment (i.e.,

a segment with relevant nodes, edges, and CPTs) is

created, satisfying the rule semantics, and utilizing

probabilistic independencies. After carrying out these

steps for all rules, the network is complete, and the

probability space at time point t is calculated based on

the probability space described by the entire network.

It was shown in that the algorithm is exponential in

the number of events and polynomial in the number of

possible worlds.

 The sampling algorithm described in the

previous section generates a Bayesian network from

which the exact probability of each event can be

computed. Given an existing Bayesian network, it is

also efficiently possible to approximate the probability

of an event occurrence using a sampling algorithm

(several such algorithms are known), as follows:

Given a Bayesian network with nodes E1,….En.

we calculate an approximation for the probability that

Ei={occurred} by first generating m ndependent

samples using a Bayesian network sampling

algorithm. Then,

Pr(Ei={occurred}) is approximated by
#𝐸𝑖={𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 }

𝑀
,

where #Ei={occurred} the number of samples in

which Ei has received the value is occurred.

Algorithm 2. RuleSamp, triggered by a new

event arrival

1. h← Φ

2. for all E 𝜖 𝐻0

3. e ←probSampling (E)

4. h← h⋃ e

5. End for

6. Order ← 𝑜𝑏𝑡𝑎𝑖𝑛𝑇𝑟𝑖𝑔𝑔𝑒𝑟𝑖𝑛𝑔𝑂𝑟𝑑𝑒𝑟

7. While order ≠ 𝛷

8. r← deleteNextRule(order)

9. h’← Φ

10. selEvents ← SR(h)

11. if pr(selEvents) = true

12. assocT uples ← ar(sel Events)

13. for all tuple ∈ assocT uples

14. { s1,….sn}← mr(tuple)

15. prob← 𝑝𝑟𝑟 (tuple, mr(tuple))

16. probsamp← 𝑠𝑎𝑚𝑝𝑙𝑒𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑟𝑜𝑏)

17. if probsamp=1

18. e←{occurred,s1….sn}

19. Else

20. e←{notOccurred}

21. end if

22. h←h’⋃{e}

23. end for

24. end if

25. h←h⋃h’

26. end while

27. return h

D. EVENT RULE DERIVATION USING

GENETIC NETWORK PROGRAMMING (GNP)

In this proposed system, Genetic Network

Programming (GNP) is used for event rule derivation.

Genetic Network Programming is one of the

evolutionary optimization algorithms, which evolves

directed graph structures as solutions instead of strings

(Genetic Algorithms) or trees. The main aim of

developing GNP was to deal with dynamic

environments efficiently by using the higher

expression ability of graph structures.

The basic structure of GNP is shown in Fig. The

graph structure is composed of three types of nodes

that are connected on a network structure: a start node,

judgment nodes (diamonds), and processing nodes

(circles). Judgment nodes are the set of J1, J2, . . . , Jp,

which work as if- then conditional decision functions

and they return judgment results for assigned inputs

and determine the next node to be executed.

Processing nodes are the set of P1, P2, . . . , Pq, which

work as action/processing functions. The start node

determines the first node to be executed. The nodes

transition begins from the start node; however there

are no terminal nodes. After the start node is executed,

the next node is determined according to the node’s

connections and judgment results.

.

V. EXPERIMENTAL RESULTS

The proposed method can be evaluated based on

number of events for precision analysis. The effect on

performance is observed by drawing the log (base 10)

of the actual number of events processed per second in

various cases, where the difference between these

cases are the percentage of events relevant to event

derivation.

International Journal of Computer & Organization Trends –Volume 4 Issue 3 May to June 2014

ISSN: 2249-2593 http://www.ijcotjournal.org Page 76

The graph shows the performance difference both

in the deterministic case and proposed method as

follows.

Figure 2: Event rate Comparision

The above graph in figure shows that the precision

analysis for event rate. In graph Event rate in seconds

are represented in Y-axis and precision beta value is

represented in X-axis. Beta value represents the

confidence width of values, 0.1, 0.2, and 0.3

respectively. Thus the proposed work gives higher

event rate per second for increasing beta value when

compare with the existing system of work.

.

VI. CONCLUSION

Thus two main challenges exist when designing a

solution for event derivation under uncertainty. First,

event derivation should scale under heavy loads of

incoming events. Second, the associated probabilities

must be correctly captured and represented. We

present a solution to both problems by introducing a

novel generic and formal mechanism and framework

for managing event derivation under uncertainty. To

solve this problem, in this system, Genetic Network

Programming (GNP) is used for event rule derivation.

A method for association rule mining from large,

heterogeneous and uncertain databases is proposed

using an evolutionary method named Genetic Network

Programming (GNP). Some other association rule

mining methods cannot handle uncertain data directly,

they are inapplicable or computational inefficient

under such a model. GNP uses direct graph structure

and is able to extract rules without generating frequent

item sets to improve mining efficiency.

REFERENCES

[1] H.N. Gehani, H.N. Jagadish, and O. Shmueli,
“Composite Event Specification in Active Databases: Model and

Implementation,” Proc. 18th Int’l Conf. Very Large Data Bases

(VLDB), pp. 23-27, 1992.
[2] S. Chakravarthy and D. Mishra, “Snoop: An Expressive

Event Specification Language for Active Databases,” Data and

Knowledge Eng., vol. 14, no. 1, pp. 1-26, 1994.
[3] N.W. Paton, Active Rules in Database Systems.

Springer, 1999.

[4] Adi and O. Etzion, “Amit—The Situation Manager,”
Int’l J. Very Large Data Bases, vol. 13, no. 5, pp. 177-203, 2004.

[5] C.L. Forgy, “Rete: A Fast Algorithm for the Many

Pattern/Many Object Pattern Match Problem,” Artificial
Intelligence, vol. 19, pp. 17-37, 1982.

[6] G. Shmueli and S. Fienberg, “Current and Potential

Statistical Methods for Monitoring Multiple Data Streams for

Biosurveillance,” Statistical Methods in Counterterrorism, pp. 109-

140, Springer Verlag, 2006.

[7] J. Pearl, Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, 1988

[8] J.S. Breese, R.P. Goldman, and M.P. Wellman,

“Introduction to the Special Section on Knowledge-Based
Construction of Probabilistic and Decision Models,” IEEE Trans.

Systems, Man and Cybernetics, vol. 24, no. 11, pp. 1577-1579,
Nov. 1994

[9] K. Kersting and L. De Readt, “Bayesian Logic

Programming,” An Introduction to Statistical Relational Learning,
pp. 291-322, MIT Press, 2007

[10] J. Cowie, A.T. Ogielski, B. Premore, and Y. Yuanb,

“Internet Worms and Global Routing Instabilities,” Proc. SPIE, vol.
125, p. 4868, 2002

0

20

40

60

80

100

120

0.1 0.2 0.3

Ev
e

n
t

ra
te

/s
e

c

Precion beta value

Exising

Proposed

