
International Journal of Computer and Organization Trends Volume 12 Issue 1, 3-10, Jan-Apr 2022

ISSN: 2249 – 2593 / https://doi.org/10.14445/22492593/IJCOT-V12I1P302 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Research Article

On Software Modular Architecture: Concepts,

Metrics and Trends

Mbugua Samuel Thaiya1, Korongo Julia2, Samuel Mbugua3

Department of Information Technology, Kibabii University, Kenya.

Received Date: 10 February 2022

Revised Date: 22 March 2022

Accepted Date: 26 March 2022

Abstract - The emergence of digital computers at the tail

end of the last century allowed for the evolution of

computer languages from low-level languages of the 1940s

to the object-oriented, scripting high-level languages of

today. This evolution has, in effect, seen the size and

complexity of computer programs increase by a large

factor. The software industry has, in response, developed

different styles for designing and developing these

sophisticated computer programs. While the different

styles have advantages and disadvantages and different

application domains, modular architecture has stood out

as an overarching architecture for designing complicated

and enormous software systems of today's world. In this

paper, we examine how modularity applies to software

architecture design, the concepts of modularity, the

metrics of modularity, and current trends in software

modularization. We advance the position that modularity

will keep influencing software design for the foreseeable

future due to the flexibility and the several advantages to

the discipline of software design.

Keywords - Software, Software Architecture, Modular

Architecture, Modularity Metrics.

I. INTRODUCTION

Today we live in a highly computerized world.

Computers and related technologies control most aspects

of today's lives. One of the major components of these

computers is software which refers to the instructions that

tell a computer what to do. The software comprises the

entire set of programs, procedures, and routines associated

with the operation of a computer system. The term is used

to differentiate these instructions from the physical
components of a computer system – the hardware [1].

Since the emergence of digital computers in the 1950s,

writing software has evolved from using machine language

through low-level assembly languages to today's high-level

languages. While high-level languages allow for the

writing of sophisticated computer programs, they also

complicate the design of these programs. As the size and

complexity of software systems increased, the design

problem went beyond the algorithms and data structures of

the computation: designing and specifying the overall

system structure has emerged as a new kind of problem.

Structural issues include overall organization and control

structure; protocols for communication, synchronization,

and data access; assignment of functionality to design

elements; physical distribution; composition of design

elements; scaling and performance; and selection among

design alternatives [2] – this is the architecture. Software

Architecture can thus be understood to mean the high-level

structure of a software system. As such, software

architecture can be viewed as consisting of three main

components; the structure of the system, the process of

creating such a structure and the documentation of the

structure.

Some of the common styles to represent software

architecture are Pipe and Filters, Layered, Repositories,

Service-Oriented Architecture (SOA), Distributed, and

Modular. To represent a complex interplay of components,

there is a need to adopt a definite style for the process. In

this paper, we focus on the modular architecture of

software design. To understand the modular design, we

first look at how layered and SOA – two of the most

popular styles - define software architecture structures.

II. LAYERED ARCHITECTURE

A popular software architectural style, layered

architecture focuses on the grouping of related

functionality within a software application into distinct

layers stacked on top of each other. Each layer provides

functionality grouped by a common responsibility or role,

with explicit and loosely coupled interactions between the

layers [3]. This style, therefore, helps to support a strong

separation of responsibilities that, in turn, supports the

flexibility and maintainability of a software system.

Similarly, Rengaiah notes that a layered architecture style

distributes the roles and responsibilities around a broader

technical function and depicts an inverted pyramid with

the preceding layer accessing more focused lower-level

layers [4]. In this manner, a layered style highlights the

physical and often the logical layout of a software

application. (Fig. 1)

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

 Mbugua Samuel Thaiya et al. / IJCOT, 12(1), 3-10, 2022

4

Fig. 1 Layered Architecture

This layered layout is evident, for example, in IBM's

accelerator software system architecture, as shown in fig. 2

Fig. 2 IBM’s Accelerator Software Layered Architecture

Source: [5]

II. SERVICE-ORIENTED ARCHITECTURE

In today’s complex and technologically connected

world, a key component in designing a software artefact is

having it communicate with other artefacts. Inter-artefact

communication allows an organization to quickly realign

and adapt its business processes in response to both

internal and external. The Service-oriented architecture

(SOA) style is concerned with how different system

business functions work with each other. These business

functions are defined as a set of services.

At its core, SOA implies that you have a set of

services that can perform some business function, and your

clients can consume these services to get their work done

[6]. Mehta and Shah observe that SOA codifies how we

can publish, utilize and identify services across various

technical and functional boundaries.

An SOA architecture style is thus largely concerned

with the communication aspects of a software application.

Fig. 3 Service-Oriented Architecture

Source: [6].

While layered architecture and SOA are formidable

styles for software systems, they are faced with certain

deficiencies, especially in the evolving world of software.

A layered system is largely conceived as three tiers - data

access layer, business, presentation – that work together to

clarify the relationship between the different elements of a

software system. However, in many modern software

projects, layers have become very large themselves, as

they contain several components and those depend on each

other. Sometimes this dependency matrix is so complex

that it naturally calls for splitting layers into more granular

sub-layers [7]. This then raises the question of how many

layers a software can have and how to manage the

complex inter-relationships between the various

components. An SOA style has similar inherent

deficiencies in how much functionality the will service

will be responsible for.

Fig. 4 SOA elements

For a layered or SOA style to work, specific

components need to know and understand the other

components in the layer or service. They will further have

connected dependencies that may break an entire software

application should one component fail. Further, Narduzzo

and Rossi pose that with the advent of free and open-

source software (FOSS) projects being developed by

several developers located worldwide, how can we have all

these developers work on the same layer or service [8].

Layered and SOA structure a monolithic software system

where the "only" application offers all use-case and

services. These architectural approaches are not only non-

flexible but curtail skills. Newer software architects,

designers and developers with different ways of doing

things cannot implement their skills without decomposing

the entire system. The approach limits the extent to which

a software system can adapt and employ new technologies

and tools.

 Mbugua Samuel Thaiya et al. / IJCOT, 12(1), 3-10, 2022

5

III. MODULAR ARCHITECTURE

A modular architecture style helps us view a system

not just as a hierarchy of layers or in terms of services

rendered but as a level of depth as a composition of

smaller "modules" [4]. Kirkk defines a module as a

"deployable, manageable, natively reusable, composable,

stateless unit of software that provides a concise interface

to consumers” [9].

The modular architecture thus decomposes a software

program into smaller programs (modules) with

standardized interfaces to allow for communication

between the modules and the core system.

Fig. 5 Modular Architecture

The modular system architecture groups related

functional requirements into a module designed as a

separate structure from the core application but consumes

and expose communication interfaces [8]. The

communications between the modules may be

implemented as I/O stream, I/O buffers, piped or other

types of connections. Each module of the system should

have one specific responsibility, which helps the user

understand the system clearly. It should also help integrate

the module with other components [10].

Rengaiah notes that a module has a clear business

context, is confined to the enclosing physical layer, works

within the context provided and expresses its scope

through a public interface [4]. Consequently, a module

helps us understand, extend, and manage the system during

the design and during run time, that is, design time

modularity and run-time modularity.

For instance, a modular system architecture for

Unmanned Aerial Vehicles (UAV) and Unmanned Ground

Vehicles (UGV), as advanced by Giakoumidis, structures

distinct modules for various UAV/UGV functionality as

well as path planning modules [11]. The modularity of this

architecture makes a rather complicated system feasible for

both development and deployment. Further, it allows for

the implementation of UAVs functionalities without the

need for UGVs and vice versa.

Fig. 6 Modular system architecture

Source [11]

IV. CONCEPTS OF MODULAR ARCHITECTURE

A modular architecture scholarly is perceived as a

manufacturing paradigm for designing and developing

complex artefacts [12]. It is, therefore, a critical element in

defining the design and development of complex software

projects as it provides a comprehensive definition of the

software project. As such, to achieve modularity, an

architect will need to consider certain concepts:

A. Module Interaction with the Application

Every module (artefact) will need to exchange data

and resources with the core system and other modules. The

designer thus needs to provide interfaces/entry points for

this communication. The interfaces will also define the

control of how/what/who/when the exchange happens [13].

 Mbugua Samuel Thaiya et al. / IJCOT, 12(1), 3-10, 2022

6

B. Module Registration

In a modular design, there is a need to create a

mechanism for the system to be aware of the existence of a

specific module. There are two approaches to this:

a) Discovery

In this approach, the main application scans for the

existence of a module and, once discovered, registers the

module. The main application then maintains a registry of

all modules discovered and their statuses. Many modern

software development frameworks have extensively

applied the concept of discovery. The PHP composer

utility, as used in Symphony, Laravel and several other

PHP frameworks, will automatically discover modules and

register them in the framework kernel [14]

b) Configuration

The designer creates specific configuration settings to

allow for the module's registration. This configuration

setting unwraps the module's default behaviour while

allowing it to learn about other modules and the existing

interfaces/entry points.

C. Module Structure (partitioning)

A module needs to have a structure to interface with

the application and other modules. This structure should

define an optimal and practical assignment logic [15].

D. Events

Like the Event-Driven Architecture, a module may

need a structure to utilize events. It should not only be able

to "listen” and "react" to events but also "raise" its events

which will trigger reactions in other parts of the software

system [13].

E. Configuration

As the module is a small customizable sub-system,

there is a need to provide configuration of the module to

meet user needs.

V. ADVANTAGES OF MODULAR DESIGN

The modular architectural design has been advanced

to remedy the deficiencies of the popular layered and SOA

architectures. By introducing granularity and separation of

services, these design styles have supported the design and

development of otherwise very complex software systems.

Further, the modular system architecture is advantageous

as it provides for:

A. Customizations

A generic standard defines systems that can change in

functionalities and services offered by utilizing the

modular design. By enabling or disabling some modules,

an implementation can completely change how a system

works and services rendered. Kibabii University in western

Kenya has amplified the need for modular customizations

in its Enterprise Resource Planning (ERP) system, where

various modules of the ERP are customized to user desires

without affecting other modules of the system [15]. Such

flexibility cannot be achieved when employing a layered

or SOA approach.

B. Less Inter-Dependency

Each module in the system is more independent from

the core software system itself. As long as the interfaces

are compatible, both modules and the core software system

can evolve independently.

C. Third-Party Extensions

Rengaiah notes that modules are not part of the core

system and only communicate with the core system and

with each other through well-defined entry points. As such,

modules can be developed by third parties [4]. The ERP

system at Kibabii University encompasses modules

developed by parties different from the main vendor. For

instance, the Learning Management module is developed

by the Moodle Open Source Community [16, 17].

D. Independent Development

Since the core system and the modules are

independent in modular design, they can therefore be

developed by external developers. This feature has

benefited many free and open-source software (FOSA)

projects [18]. Further, each module's core systems can be

released with independent release cycles and developed

potentially with different technologies and tools. The

modular OpenMRS medical record system has different

modules developed using various technologies. While the

core system is developed in Java and utilizes the Spring

framework, the module repository has modules developed

using AngularJS, ReactJS and Vue frameworks, among

other frameworks, clearly indicating how modularity

allows for independent development [18]. Similarly,

Narduzzo and Rossi, in their study on the design of

complex software artefacts, have attributed the

achievements of various Free/Open Source Software

(FOSS) projects (among them: the GNU operating system,

the Linux kernel, the HURD kernel) to the modular

approach adopted by these FOSS projects [8].

E. Smaller Core Application

The size of the main software system is significantly

reduced since much functionality can be implemented via

modules. This translates to a better understanding of the

system and better maintainability.

F. Reusability

A well-conceived module is fully reusable. You can

reuse the old solution whenever you have the same need

again.

G. Refactorability

The fewer inter-dependencies in a project, the easier it

is to make large changes across multiple modules [19].

H. Scalability

Modular design allows software applications to scale

as it is almost impossible to build large applications

without good modularization. Brinkman and Delamore

note that the complexity of a monolithic system built

without modules will destroy productivity [19].

 Mbugua Samuel Thaiya et al. / IJCOT, 12(1), 3-10, 2022

7

VI. CHALLENGES OF MODULAR DESIGN

Whereas the modular architecture provides a

convenient architecture for software projects and places

software designers and developers at the centre of software

evolution, thus underlining that business agility can be

enabled through critical design, it is also laced with some

challenges:

A. Architectural Mismatch

One issue is with systems that integrate orthogonal

functionality into a single modular artefact which

introduces artificial coupling of functionalities driven by a

specific implementation requirement. While such coupling

may have some locally optimal performance, this often

may come at the expense of the global optimality of the

software system [20].

B. Physical Variability

Physical variability refers to how different variable

modules within the same software system are. For the

software application to support all these variable modules,

it will need to provide a generic interface/entry point.

When designing a generalized interface, it is often the case

that neither the union of all possible capabilities nor the

intersection of such capabilities is satisfactory. The generic

product interface thus supports capabilities that often lie in

between [20].

C. Inaccuracy in Modularity Analysis

When choosing certain architecture abstractions,

styles and mechanisms for decomposing a system,

architects may leave some functionalities/services non-

modularized. These functionalities will thus not be

comprehensively provided for in separate modular units in

the architecture description, often leaving functional traces

in some modules. This architectural description may lead

to some false positives in the architecture assessment

process [21]. A fully modularized feature is left in the

architectural description, which may lead to false negatives

in the analysis process.

D. Blurred Inter-Modular Boundaries

The dependency between system requirements is a

piece of pivotal information for software architects to

design well-defined modules. However, as modules take

distinctive paths to design change, existing coupling

metrics may inaccurately identify architectural inter-

module dependencies. The overall outcome is blurred

inter-modular boundaries and tight interfaces coupling [21].

Similarly, the evolution of the software system may keep

increasing the complexity of the design, effectively

omitting finite details of modular characteristics. The

phenomenon, if unchecked, will also lead to a fuzzy inter-

modular boundaries description.

E. Inaccuracy in Identifying Instabilities:

The output of a modular system is based on the

seamless and smooth function of every module and the

communication of the modules. Where there is instability

in the system, there remains a challenge in identifying the

source of instability in the complex modular system. The

problem is that conventional metrics cannot accurately

identify the unstable element/module.

Table 1. Modular system pros and cons summary

S/N Pros Cons

1 Customizations Architectural Mismatch

2 Less interdependency Physical variability

3 Third-party extensions Inaccuracy in modular analysis

4 Independent development Vague inter-modular boundaries

5 Small and robust core application Difficulty in identifying instabilities

6 Reusability

7 Re-factorability

8 Scalability

VII. MODULARITY METRICS

A module is an assemblage of components that share a

common characteristic and assemble according to this

common characteristic to accomplish a designated

objective. Within each module, components are strongly

connected among themselves and relatively weakly

connected to components in other modules. It is important

to measure the strength of these connections between

components which determines the modularity of a software

system. Software architects acclaim software modularity

metrics to monitor projects, discover non-conformities and

point out risks like low modularity in software projects

since the early stages of project development [22]. Some

of the metrics to measure modularity include:

A. Cohesion

Cohesion refers to the relationship between the

internal elements and how cohesive the connections are

[23].

 Mbugua Samuel Thaiya et al. / IJCOT, 12(1), 3-10, 2022

8

Fig. 7 Modular Cohesion

The Page-Jones theory on structured systems design

focuses on different forms of cohesion for a modular

architecture: 1) Functional cohesion refereeing to when all

elements of a module contribute to a single well-defined

task. 2) Sequential cohesion is when elements of a module

are grouped because the output from one element is the

input to another element (for example, a function that

reads data from a file and processes the data). 3) Logical

cohesion in cases where elements are grouped logically. 4)

Temporal cohesion where components are related together

in a time-space, e.g. an initialization module. 5)

Communicational cohesion if all activities within the

module act on the same input or output data. 6) Procedural

cohesion in instances where activities of a module are

sequentially executed together to perform a specific task,

and 7) Co-incidental cohesion where elements in a module

are related together in an unplanned and random manner.

This relationship is deemed meaningless as it may lead to

further decomposition of the module [24].

B. Coupling (Degree of Interdependence)

Coupling in software engineering refers to the degree

of interdependence between software modules, measuring

how closely connected two modules are [25]. The software

requirement specification document defines various

aspects of inter-modular dependence and independence.

Fig. 8 Modular Coupling

The degree of interdependence between modules can

be broadly categorized as afferent and efferent coupling.

Afferent coupling is a metric that measures the total

number of elements outside of a module that depends on

elements within the module. In contrast, the efferent

coupling measures the total number of elements within the

module that depend on elements outside the module [22].

Further, the Page-Jones model identifies various forms of

coupling in modular designs: 1) Content coupling, which

refers to interdependence where one module can directly

access or modify or refers to the internal content of another

module. This is the highest form of interdependence. 2)

Common coupling, where a number of modules have

access to read and modify a shared global area. 3) Control

coupling in cases where one module controls how another

module functions. 4) Data Coupling occurs when one or

more modules have some parameterized data

communication. 5) Stamp coupling, where modules share

some common data structures but work on different

sections of the shared data structure [22, 24].

C. Instability

The instability metric measures the instability of

components, where stability is measured by calculating the

effort to change a component without impacting other

components within a software application. Santos et al.

support this position while analyzing Martin's instability

measure. They opine that if an entity has a high value of

instability, then there is a high risk of undesired changes

that could affect the analyzed entity's behaviour due to

changes in other system entities [22].

VII. MODULARITY TRAVELOGUE

The quality of a software artefact and its longevity is

determined by its architecture to a great extent [26]. It is

therefore imperative for software architecture to evolve

with time to meet the evolving needs of software users.

Eoin Woods takes a pragmatic look at the five ages of

evolution of software systems and the accompanying five

stages of software architectures [27]. The review

illuminates the path modularity has taken over the

architectural ages to present-day architecture. With each

evolution, modularity has changed from the original

monolithic modules to today's microservice modules.

 Mbugua Samuel Thaiya et al. / IJCOT, 12(1), 3-10, 2022

9

Fig. 9 Modularity travelogue: Adopted with changes from Eoin [27]

The modularity of software has largely paralleled that

of the software industry, with architects' techniques and

concerns changing in response to the changing challenges

the industry has faced.

Today's software systems are more network-centric,

and intelligent modularity has morphed to provide

intelligent interfaces and entry points that no longer need

to be bound to physical computing stations. David Garlan

supports this position and identifies the network-centric

nature of software artefacts as a driver for present and

future software architectures [28]. By evolving to support

code reusability through modern frameworks, the concept

of modularity is embedding itself in the emerging new

architectures while allowing for the development of new

software paradigms [27].

The concept of modularity is embedded in new

cloud-based technologies like SaaS, PaaS and IaaS. As

businesses become more differentiated, their software

needs become more custom necessitating customizable

software to create their unique experience. SaaS vendors

utilize modular SaaS systems where customers can get

different experiences by turning on or off services

packages in modules.

Eoin’s travelogue shows that present and future

intelligent, Internet-native systems will continue to be

dynamic and composed of fine-grained network modules

(micro-services) [27]. The modules are often built on

SaaS/PaaS platforms, allowing customers to choose what

modules fit their needs, economic capacity, and technical

viability to serve unique requirements. Modularity is an

architectural design poised to remain a dominant style of

designing software systems.

VIII. CONCLUSION

Modularity occupies a pivotal position in the design

of good software system architectures. Several software

projects have adopted modular design by going a level

beyond layered, and SOA approaches. The architecture

resolves the problem of monolithic complexity and

granular layered systems that are difficult to design,

develop and implement. Studies have proven and

documented that modular design allows for refactorbility,

reusability, customizations, software collaborations, and

scalability. Further, it is established that modularity leads

to minimalistic core applications allowing for in-depth

understanding and simplifying maintenance of the core

system.

However, modular design also comes with some

challenges: architectural mismatch, physical variability

and blurry inter-module boundaries expose designers to

barriers that need solutions. However, it is notable that

considerable development of modularity measurement

metrics will keep fore sighting the challenges and thus

have them addressed at the inception stages of software

projects. Further, current trends in software systems

design and development show that modularity remains a

dominant style where existing and emerging styles

incorporate the concept of modularity to address the

inherent limitations of non-modular systems.

REFERENCES
[1] (2021). Britannica T, Editors of Encyclopaedia, Software.

Encyclopedia Britannica. [Online]. Available:

https://www.britannica.com/technology/software

[2] Garlan D, & Shaw M, An Introduction to Software Architecture. In

Advances in Software Engineering and Knowledge Engineering.

(1993) 1-39.

[3] (2010). Chapter 3: Architectural Patterns and Styles. [Online].

Available:https://docs.microsoft.com/en-us/previous-versions/msp-

n-p/ee658117(v=pandp.10)?redirectedfrom=MSDN

[4] (2014). Rengaiah P, On Modular Architectures. Medium. [Online].

Available:https://medium.com/on-software-architecture/on-

modular-architectures-53ec61f88ff4.

[5] (2021). Accelerator (software) - Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/Accelerator_(software)

[6] Mehta M. R, Lee S, & Shah J. R, Service-Oriented Architecture:

Concepts and Implementation. In Proceedings of the Information

Systems Education Conference (ISECON). 23(2335) (2006) 1.

[7] Tutisani T, Effective Software Development for Enterprise Beyond

DDD, Software Architecture, and XP 1st edition: Leanpub. (2020).

 Mbugua Samuel Thaiya et al. / IJCOT, 12(1), 3-10, 2022

10

[8] Narduzzo A, & Rossi A, Modular Design and the Development of

Complex Artefacts: Lessons from Free/Open Source Software,

Quaderno, DISA. 78 (2003).

[9] Knoernschild K, Java Application Architecture: Modularity

Patterns with Examples Using OSGi. Prentice-Hall Press. (2012).

[10] (2021). Tutorialspoint, Software Architecture & Design Tutorial -

Tutorialspoint. [Online] Available:

https://www.tutorialspoint.com/software_architecture_design/index

.htm

[11] Giakoumidis N, Bak J. U, Gómez J. V, Llenga A, & Mavridis N,

Pilot-Scale Development of a UAV-UGV Hybrid with Air-Based

UGV Path Planning. In 2012 10th International Conference on

Frontiers of Information Technology IEEE. (2012) 204-208.

[12] Schilling M. A, Toward a General Modular Systems Theory and its

Application to Interfirm Product Modularity, Academy of

Management Review. 25(2) (2000) 312-334.

[13] (2020). Mustafic A, Modular Application Architecture. [Online].

Available: Goetas.com

https://www.goetas.com/modular-application-architecture-intro

[14] (2021). Package Development - Laravel - The PHP Framework for

Web Artisans. [Online]. Available:

https://laravel.com/docs/8.x/packages

[15] Soothram S, Efficient Techniques for Partitioning Software

Development Tasks. (2010).

[16] (2021). Kibabii, Kibabii University. [Online]. Available:

https://kibu.ac.ke/kibu-automation-dream-accomplished-in-2019-

2020-academic-year.

[17] (2021). Moodle, Moodle Plugins Directory. [Online]. Available:

Moodle.org https://moodle.org/plugins

[18] (2021). OpenMRS I, OpenMRS. [Online]. Available: Openmrs.org

https://openmrs.org

[19] (2020). Brinkman S, & Delamore D, The 5 Essential Elements of

Modular Software Design, Medium. [Online]. Available:

https://shanebdavis.medium.com/the-5-essential-elements-of-

modular-software-design-6b333918e543.

[20] Nesnas I. A. D, Simmons R, Gaines D, Kunz C, Diaz-Calderon A,

Estlin T, Madison R, Guineau J, McHenry M, Shu I.-H, &

Apfelbaum D, CLARAty: Challenges and Steps toward Reusable

Robotic Software, International Journal of Advanced Robotic

Systems. (2006). https://doi.org/10.5772/5766

[21] Sant’Anna C, Figueiredo E, Garcia A, & Lucena C. J, On the

Modularity of Software Architectures: A Concern-Driven

Measurement Framework. In European Conference on Software

Architecture, Springer, Berlin, Heidelberg. (2007) 207-224.

[22] Santos D, de Resende A. M. P, Lima E. C, & Freire A. P, Software

Instability Analysis Based on Afferent and Efferent Coupling

Measures. J. Softw., 12(1) (2017).

[23] Budd T, Introduction to Object-Oriented Programming, Pearson

Education India. (2008).

[24] Page-Jones M, The Practical Guide to Structured Systems Design.

Yourdon Press. (1988).

[25] (2021). Coupling (computer programming) - Wikipedia. [Online].

Available:

https://en.wikipedia.org/wiki/Coupling_(computer_programming

[26] Northrop L, Trends and New Directions in Software Architecture,

Carnegie-Mellon Univ Pittsburgh PA Software Engineering Inst.

(2014)

[27] Woods E, Software Architecture in a Changing World, IEEE

Software. 33(6) (2016) 94-97.

[28] Garlan D, Software Architecture: A Travelogue, In Future of

Software Engineering Proceedings. (2014) 29-39.

