
International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 5 – Sep - Oct 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 5

A Venture to Build a CNC Machine

Kuo-pao Yang, Andrew Burningham, Kaleb Champagne, Damodar Dahal, John Hernandez

Department of Computer Science

Southeastern Louisiana University

Hammond, LA 70402 USA

Abstract — This project takes a venture to build a

Computer Numerical Control (CNC) machine,

capable of drawing images onto a sheet of paper
using a writing utensil. This CNC machine is coded

in Python programming language. It is controlled by

a graphical user interface on a Raspberry Pi. This

system implements voice recognition capabilities to

do a Google search for Scalable Vector Graphics

(SVG) from the world wide web, parse the SVG

images, and then draw them onto a sheet of paper.

Keywords — CNC Machine, Raspberry Pi, Voice

Recognition, Image Processing

I. INTRODUCTION

Computer Numerical Control (CNC) machines
are popular modern technologies in the professional

world. Many companies have their own CNC

machines to draw in two-dimension or cut in three-

dimension objects. A CNC machine can process a

piece of material by following a coded programed

instruction without a manual operator. Instructions

are loaded to a CNC machine in the form of a

sequential program of machine control instructions

and then executed. The CNC machine allows to

design and change the drawing and cutting pieces for

different purposes and materials such as metal,
plastic, wood, and ceramic.

This project has been a great learning experience

by recreating a CNC machine. To complete this

project, we create the structure of the product

through self-made, custom pieces to best

accommodate the size and functionality of the

machine, parse SVGs found on Google images, and

then produce a real physical copy of the image on a

piece of paper printed out by the CNC machine. This

project also incorporates a voice recognition API [1]

to search for Scalable Vector Graphics (SVG) [2]

images of a desired theme and implements Python’s
graphical user interface elements [3] to allow users

to choose which images fit their needs.

In the following sections, we review the related

work on CNC machines. This paper describes the

implementation to perform the functionality of the

CNC machines such as the platform and operating

system to run the product, the hardware and software

to record and translate voice inputs, the language to

write the code and important libraries affiliated with

them. Finally, this paper shows the results of what

this CNC machining system has achieved and

provides ideas for future areas of research.

II. BACKGROUND

The CNC machining has been a part of the

industrial world for decades. These machines have

been used to help companies produce certain parts

for their developing projects. They are also quick

options for prototypes when working on research

projects or any kind of hobby. The CNC machines

are able to fabricate two-dimensional and three-

dimensional objects [4]. These machines are useful

since they allow artists, for instance, to design more

art rapidly. Artists can investigate new avenues of

creating art. In a similar way, hobbyists can use

CNC machines to quickly create more parts for their
projects.

Piccolo is a pocket-sized open source CNC

machine [5]. This tiny CNC bot is an Arduino

compatible system, which interprets digital design

into machine executable commands, using a

computer-controlled framework to move extrusion

heads or cutting implements to fabricate parts.

Piccolo is an end-user-oriented CNC machine. It has

adopted Arduino as the default control board such

that no prior experience with CNC systems or

programming is required. Experienced programmers
can also write programs to build their own

application with Arduino and Piccolo libraries.

The CNC machines can be used for many

different research projects. These machines are used

to cut out pieces for prototypes, which can produce

anything from parts for a robot to models of a final

research product. The ability to create models and

parts swiftly speeds up the researching process,

which requires researchers or those working on

robotics to go through many iterations. The

flexibility of CNC machines draw/cut [6] gives their

users more time to pursue a deeper dive into
research or development of their final product.

This project sets out to build a CNC machine to

learn about the technologies used in developing

these machines furthering the knowledge of

programming and implementing software and

hardware. This CNC machine can take voice

commands, search information from the world wide

web, and then draw images onto a sheet of paper. By

building our own CNC machine, we can add and

customize features instead of buying a complete kit.

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 5 – Sep - Oct 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 6

III. SOFTWARE IMPLEMENTATION

 We now discuss the implementation of this CNC

machine and explain the steps to how voice

recognition application finds the SVG images, which

are parsed and eventually drawn.

The voice recognition application is made using

two key components: Python’s speech recognition

library [7] and Google Cloud Speech API [8]. Using

both sources in conjunction allows the users to save

their dialogue into an audio input file. This

application then converts the audio input into actual

text format. SVG images [9] from Google Images
are searched, retrieved, and downloaded on the

system. The downloaded images are stored and

ready to be parsed.

In Fig. 1, the Python code shows important

libraries that are imported into the script. The

speech_recognition is used for taking an

input from a microphone function and storing it to

be used later by the Google API, which takes the

stored audio and uses it to find images related to the

subject. The import OS is used to start certain

functions in the Python before any functionality of
the script begins.

Fig. 1. Speech Recognition Library and Google Assets

Fig. 2 represents the actual functions of the

Python script. The variable recognize is used to

collect the audio input from users. The Microphone

function takes from speech_recognition

library and uses it as a source of input.

Fig. 2. Speech to Text

The source is used like

recognize.listen(source) where python

begins listening to the source of audio (Microphone)

and stores it in audio. Next, audio is passed into

the Google Speech function

recognize_google(), which takes the audio

and turn it into a google search. Finally,

downloader is used to download images that meet

the criteria made in the following variable args,

which googles text and find 10 images of SVG

formats. Once downloaded, the images are ready for

parsing.

In the following sections, we discuss the image

parsing, the graphical user interface, the voice

recognition, and the physical drawing.

A. Parse Image

Once the users select the SVG image they want to
draw, the selected image is downloaded to the file

system. The file is fed into a Python standard

package named svgpathtools [10]. The svgpathtools

module is primarily structured around four path

segment classes: Line, QuadraticBezier, CubicBezier,

and Arc. There is also a fifth class, Path, whose

objects are sequences of connected or disconnected

path segment objects. This package reads in a SVG

file and is able to read the data attribute ("d") of

<path> tags in the SVG. Any SVG files can be read

in just a single line using

_paths, attrs =

svgpathtools.svg2paths(path)

The _paths is a Python list of Path instances.

A sample output of print(paths)for a simple

rectangle looks like this:

[Path(

 Line(start=(103.5+74j), end=(439.5+74j)),

 Line(start=(439.5+74j), end=(439.5+248j)),

 Line(start=(439.5+248j),end=(103.5+248j)),

 Line(start=(103.5+248j),end=(103.5+74j))

)]

After these paths are read, the next step is to

reduce the paths down to simple points. The parser

code for converting SVG paths to x + yi coordinates

is shown in the Fig. 3.

Fig. 3. Converting SVG Paths to x + yi Coordinates

The package uses complex numbers to represent
coordinates (x is real, y is imaginary). The following

code is used to map the complex numbers into a 2-

tuple representing (x, y). It converts x + yi

coordinates to (x, y) coordinates.

res_paths = [list(map(lambda c: (c.real,

c.imag), path)) for path in res_paths]

The final part of the parser is to normalize the

coordinates. In Fig. 4, the parser rescales all the

for path in _paths:

 for p in path:

 if isinstance(p, svgpathtools.CubicBezier):

 P0, P1, P2, P3 = p.start, p.control1, p.control2,

p.end

 points = []

 for t in np.arange(0, 1, 0.01):

 B = ((1 - t)**3) * P0 + 3 * ((1-t)**2) * t * P1

+ 3 * (1-t) * (t**2) * P2 + (t**3) * P3

 points.append(B)

 res_paths.append(points)

 elif isinstance(p, svgpathtools.Line):

 res_paths.append((p.start, p.end))

 else:

 print('unsupported SVG type found: ', type(p))

import speech_recognition as speech

import os

from google_images_download import

google_images_download

os.system("jack_control start")

os.system("pulseaudio --start")

recognize = speech.Recognizer()

recognize.energy_threshold = 2000

with speech.Microphone() as source:

 print('I am listening, say something!')

 audio = recognize.listen(source)

 print('Done listening.')

try:

 text = recognize.recognize_google(audio)

 print('Google thinks you said: ' + text)

 downloader =

google_images_download.googleimagesdownload()

 args = {"keywords":text, "limit":10, "format":"svg"}

 print(args)

 downloader.download(args)

except Exception as exception:

 print(exception)

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 5 – Sep - Oct 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 7

points such that x and y coordinates are bounded

between (0.0, 0.0) and (1.0, 1.0).

Fig. 4. Recaling the Coordinates

B. Draw the Coordinates

By the method above, the list of the Paths

looks like List<(x, y)>. Note that all the

coordinates up to now are absolutely defined in the

range of 0.0 to 1.0 across both X- and Y- axes. We

begin by converting these coordinates according to

the page height and width, as defined in

PAGE_HEIGHT and PAGE_WIDTH variables. The

next part of program is to convert the absolute

coordinate system to a relative coordinate system,

and then produce pen movement vectors accordingly.

In Fig. 5, the code does the coordinate

enlargement, relative coordinating as well as
converting the coordinates into the actions of the

CNC drawing machine pen motors.

Fig. 5. Converting Coordinates to Actions of Pen

Motors

The pen motor will be able to do the following

three actions: MOVE, DOWN, and UP

{'type': 'MOVE', 'distance': (x, y)}

to move the motors in the two axes
{'type': 'DOWN'}

to bring the pen down in contact with paper for drawing
{'type': 'UP'}

to bring the pen away from paper to disable drawing

In Fig. 6, these actions are executed sequentially

in order to make the motors move. When trying to

draw a SVG with a simple rectangle, the parser

writes the following content to stdout.

Fig. 6. Parser Outputs for a SVG Rectangle

C. GUI Interface and Command-line Instruction

This CNC machine provides a small graphical

user interface to allow the user to choose an item via

a file dialog and run the voice commands. The

device can also use the command-line instruction. It

requires the voice activation to be run in sudo, for

example:

sudo python main.py item.svg pageWidth

pageHeight

Note that all values are in inches since the parser

automatically converts into inches.

D. Motor Control and Image Drawing

This project uses the Pigpio to control the General

Purpose Input Outputs (GPIO) pins on Raspberry Pi.

The Pigpio library is a Python module for the

Raspberry which talks to the Pigpio daemon to allow

control of the GPIO. This project does not use any

other libraries that would normally be used by other

projects such as PyGCode, a low-level GCode
interpreter for python [11]. The hardware controlled

by the Raspberry Pi consists of two stepper motors

and a servo motor. The stepper motors control x and

y axes, while the servo motor controls the pen

mechanism, also known as z. Since the stepper

motor has 4 different possible states, the linked list is

designed to incorporate clockwise and

counterclockwise single steps. For the servo motor

control, the Pigpio library is used for direct

frequency control. It is able to specify two specific

frequencies to alternate between a pen_up and a

pen_down state.

After the normalized coordinates are converted

into physical dimensions, each command is parsed in

the resultant Python Dictionary, called actions.

Every action needs some calculations. The screws

have 3.175 threads per inch. The stepper motors

have 200 steps per full revolution. Therefore, a

single step is 1 / (3.175 * 200) = 1/635 inches, which

is also the theoretical limit on accuracy. However,

the ball-pen to physically draw with produces a line

[Path(Line(start=(103.5+74j), end=(439.5+74j)),

 (Line(start=(439.5+74j), end=(439.5+248j)),

 (Line(start=(439.5+248j), end=(103.5+248j)),

 (Line(start=(103.5+248j), end=(103.5+74j)))]

actions:

{‘distance’: (0, 0), ‘type’: ‘MOVE’}

{‘type’: ‘DOWN’}

{‘distance’: (32000, 0), ‘type’: ‘MOVE’}

{‘type’: ‘UP’}

{‘distance’: (0, 0), ‘type’: ‘MOVE’}

{‘type’: ‘DOWN’}

{‘distance’: (0, 32000), ‘type’: ‘MOVE’}

{‘type’: ‘UP’}

{‘distance’: (0, 0), ‘type’: ‘MOVE’}

{‘type’: ‘DOWN’}

{‘distance’: (-32000, 0), ‘type’: ‘MOVE’}

{‘type’: ‘UP’}

{‘distance’: (0, 0), ‘type’: ‘MOVE’}

{‘type’: ‘DOWN’}

{‘distance’: (0, -32000), ‘type’: ‘MOVE’}

{‘type’: ‘UP’}

Process finished with exit code 0

chainable = sum(res_paths, [])

max_x = max(chainable, key=lambda c: c[0])[0]

min_x = min(chainable, key=lambda c: c[0])[0]

max_y = max(chainable, key=lambda c: c[1])[1]

min_y = min(chainable, key=lambda c: c[1])[1]

return [

 list(map(lambda r: ((r[0] - min_x)/ (max_x - min_x),

(r[1]-min_y) / (max_y - min_y)), r)) for r in res_paths

]

paths = list(map(lambda path: [(int(x * PAGE_WIDTH),

int(y * PAGE_HEIGHT)) for x,y in path], paths))

 for path in paths:

 if len(path) == 0:

 continue

 else:

 for i, point in enumerate(path):

 distance = (point[0] - pos[0], point[1] -

pos[1])

 pos = pos[0] + distance[0], pos[1] + distance[1]

 actions.append({'type': 'MOVE', 'distance':

distance})

 if i == 0 and i == len(path) - 1:

 continue

 if i == 0:

 actions.append({'type': 'DOWN'})

 if i == len(path)-1:

 actions.append({'type': 'UP'})

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 5 – Sep - Oct 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 8

that is far thicker than 1/635 inches. Since the pen is

thicker than the steps, it is less of an issue. The

larger value referenced in actions always runs

rounded into the nearest whole number.

In Fig. 7, delta is the ratio from the larger

coordinate to the smaller coordinate, rounded to the

nearest integer. The distribution is how many

steps to add every delta iteration. To calculate

both logically and computationally, all the

coordinates are put into a complex form with x being

real and y being imaginary. In short, every delta

iteration and every distribution move a single step
for the smaller coordinate.

Fig. 7. Image Drawing Calculation

IV. HARDWARE IMPLEMENTATION

 This project controls the CNC machine using a

Raspberry Pi 3 Model B [12]. This project codes in

Python, uses a High Definition Multimedia Interface

(HDMI) cable connected to a monitor for a GUI, and
takes advantage of the General Purpose Input Output

(GPIO) pins on Raspberry Pi [13]. The GPIO pins

are connected to control the board. The Raspberry Pi

can handle the voltage needed to run the stepper

motors, which control the x-axis and y-axis

movement.

With the Raspberry Pi Wi-Fi capability [14], this

CNC machine performs a Google search for voice

recognition, which will allow users to quickly find

images that they would like to print on the machine.

To handle voice recognition, a microphone is used to
capture the user’s voice input.

This project uses Nema-17 stepper motors set to

their bipolar mode in conjunction with L298N

control boards for both the x-axis and the y-axis of

the machine. To power the control boards and the

stepper motors, a generic computer power supply is

used. Stepper motors work by having electromagnets

in a shell and a permanent magnet in center by

which the item moves. In the full step sequence, two

coils are energized at the same time and motor shaft

rotates. The order in which coils needs to be

energized is given in the table below.

TABLE I. 4-STEP OF STEPPER MOTORS

Step A B C D

1 1 0 0 1

2 1 1 0 0

3 0 1 1 0

4 0 0 1 1

There are four possible state positions which

correspond to which electromagnets are on or off,

traditionally referred to as ―high‖ and ―low‖ [15].

Therefore, the electromagnets literally force the

inner magnet into place at 4-step iterations. By

designing a doubly-linked circular list, motors go

back and forth completely independently shown in

Fig. 8.

Fig. 8. Implementation of Stepper Motors

In Fig. 9, this machine is set up with the

Raspberry Pi. Many of the parts of the CNC machine
had to be custom made to fit our purposes.

Fig. 9. Set Up with the Raspberry Pi

delta = 1

y_leftover = 0

x_leftover = 0

if (abs(gradient.imag) > abs(gradient.real)):

 delta = int(round(gradient.imag / gradient.real))

 x_leftover = int(abs(gradient.imag)) %

int(abs(gradient.real))

elif (abs(gradient.imag) < abs(gradient.real)):

 delta = int(round(gradient.real / gradient.imag))

 y_leftover = int(abs(gradient.real)) %

int(abs(gradient.imag))

else:

 delta = 1

 x_leftover = 0

 y_leftover = 0

 num_x_steps = int(round((abs(gradient.real) / delta)))

 y_moved = 0

 x_moved = 0

 num_y_steps = int(round((abs(gradient.imag) / delta)))

 if (abs(gradient.real) > abs(gradient.imag)):

 if y_leftover == 0:

 distribution = 0

 else:

 distribution = abs((int)(round(abs(gradient.real)

/ y_leftover)))

 elif (abs(gradient.real) < abs(gradient.imag)):

 if x_leftover == 0:

 distribution = 0

 else:

 distribution = abs((int)(round(abs(gradient.imag)

/ x_leftover)))

 else:

 leftover_steps = 0;

 distribution = 0;

x_list = DoubleList()

x_list.append([1,0,0,1]) #step 1

x_list.append([1,1,0,0]) #step 2

x_list.append([0,1,1,0]) #step 3

x_list.append([0,0,1,1]) #step 4

x_list.getHead().prev = x_list.getTail()

x_list.getTail().next = x_list.getHead()

y_list = DoubleList()

y_list.append([1,0,0,1]) #step 1

y_list.append([1,1,0,0]) #step 2

y_list.append([0,1,1,0]) #step 3

y_list.append([0,0,1,1]) #step 4

y_list.getHead().prev = y_list.getTail()

y_list.getTail().next = y_list.getHead()

x_current = x_list.getHead()

y_current = y_list.getHead()

Below is used for the x motor

x_coil_A_1_pin = 6

x_coil_A_2_pin = 13

x_coil_B_1_pin = 19

x_coil_B_2_pin = 26

Below is used for the y motor

y_coil_A_1_pin = 12

y_coil_A_2_pin = 16

y_coil_B_1_pin = 20

y_coil_B_2_pin = 21

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 5 – Sep - Oct 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 9

V. EVALUATION

We tested the solution by building the machine

and having it draw multiple different images. The

imager has to parse out an integer value for how

many steps to move, since we can only move one

step at a time with the stepper motors. This takes
away from the accuracy of the image when it is

printed out. The longer an image takes to be drawn

out, the more off the image will get. This project is

not yet to the level of a professionally built CNC

machine. However, it has gotten very close to

producing the images given to the machine shown in

Fig. 10. We built our machine from scratch by

custom milling parts and coding all of the movement

functionality of the machine.

Fig. 10. Draw an Image

VI. CONCLUSION

Our solution for CNC machines is worth

considering since it achieves greater affordability by

providing voice recognition, searching images,
parsing images, and then drawing objects. By

building our own CNC machine, we can add and

customize features instead of buying a complete kit.

This project is good for technology and engineering

enthusiasts. Good modifications could be used to

completely convert into a fully professional grade

machine.

REFERENCES

[1] T. Agus, C. Suied, , S. Thorpe, and D. Pressnitzer,

―Characteristics of Human Voice Processing,‖ Proceedings

of 2010 IEEE International Symposium on Circuits and

Systems (ISCAS), pp. 509 – 512, 2010.

[2] D. Bogaard, R. Vullo, and C. Cascioli ―SVG for

Educational Simulations,‖ CITC5’04 Proceedings of the

5th Conference on Information Technology Education, pp.

43 – 49, 2004.

[3] D. Letscher, M. Goldwasser, ―Teaching Objected-Oriented

Programming in Python,‖ Proceedings of the 12th Annual

SIGCSE Conference on Innovation and Technology in

Computer Science Education (ITiCSE’07), pp. 365-366,

2007.

[4] J. Li, J. Jacobs, M. Chang, B. Hartmann, ―Direct and

Immediate Drawing with CNC Machines,‖ Proceedings of

the 1st Annual ACM Symposium on Computational

Fabrication (SCF ’17), Article 11, 2017.

[5] G. Saul, T. Rorke, H. Peng, and C. Xu, ―Make Your Own

Piccolo,‖ Proceedings of the 7th International Conference

on Tangible, Embedded and Embodied Interaction

(TEI ’13), pp. 439 – 442, 2013.

[6] A. Sata, ―Error Measurement and Calibration of Five Axis

CNC Machine using Total Ball Bar Device,‖ Proceedings

of the International Conference and Workshop on

Emerging Trends in Technology (ICWET ’10), pp. 660-

662, 2010.

[7] S. Dey, K. Kashyap, ―VAANI--A Voice-based

Authentication System for Linux Using Dynamic

Threshold and Positive Selection,‖ Proceedings of the 10th

Annual ACM India Compute Conference (Compute ’17),

pp. 49 – 59, 2017.

[8] A. Meliones, C. Duta, ―SeeSpeech: An Android

Application for the Hearing Impaired,‖ Proceedings of the

12th ACM International Conference on PErvasive

Technologies Related to Assistive Environments

(PETRA ’19), pp. 509 – 516, 2019.

[9] C. Seel-audom, W. Naiyapo, and V. Chouvatut, ―A Search

for Geometric-Shape Objects in a Vector Image: Scalable

Vector Graphics (SVG) File Format,‖ 2017 9th

International Conference on Knowledge and Smart

Technology (KST), pp. 305 – 310, 2017

[10] A. Yassine, J. Abdelaziz, E. Ahmed, ―SVG Image

Comparison Using Commands of Element Path,‖

Proceedings of the Mediterranean Symposium on Smart

City Application (SCAMS ’17), Article 14, 2017.

[11] M. Hanifzadegan, R, Nagamune, ―Contouring Control of

CNC Machine Tools Based on Linear Parameter-Varying

Controllers,‖ IEEE/ASME Transactions on Mechatronics,

21 (5): 2522 – 2530, October, 2016.

[12] K. P. Yang, G. Kiepper, B. Henry, and R. Hunter,

―Modular Architecture for IoT Home Automation and

Security Surveillance,‖ Journal of Multidisciplinary

Engineering Science and Technology (JMEST), ISSN

2458-9403, 5(11): 8978-8982, November, 2018.

[13] K. P. Yang, R. Dejean, C. Clapp, R. Banks, D. Raygadas,

and I. Bendanas, ―Network Security Practical Concepts,

Importance, and Potential Implications,‖ Journal of

Multidisciplinary Engineering Science and Technology

(JMEST), ISSN 2458-9403, 4(10): 8318-8322, October,

2017.

[14] K. P. Yang, N. Moran, I. Bendana, S. Champagne, and T.

Becker, ―LOPEZ: A Bilingual Robotic Car,‖ International

Journal of Research in Advent Technology (IJRAT), E-

ISSN 2321-9637, 4(12): 51-55, December, 2016.

[15] L. Zhang, L. Liu, J. Shen, J. Lai. K. Wu, Z. Zhang, J. Liu,

―Research on Stepper Motor Motion Control Based on

MCU,‖ Chinese Automation Congress (CAC), pp. 3122 –

3125, 2017.

