

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

 ISSN: 2249-2593 http://www.ijcotjournal.org Page 34

Review of Literature for Code Duplication and

Refactoring of Code Clones

Dr.G.Anil Kumar

Sr. Assistant Professor CSE MGIT Hyderabad T.S. India

Abstract

Code duplication popularly known as code cloning is

an act of reusing the code by cut, copy and paste.

Code cloning research was carried out by many

researchers throughout the world. This paper

discusses some of the research contributions made by

different scholars in this area to understand the

direction of research work.

I. CODE CLONE LITERATURE

Research in Code cloning is growing steadily from

1990s onwards. So, for the past two decades lot of

research has been done in the area of code cloning. In

this paper we are presenting some of the back ground

work and literature that was encouraged us to take up

this work as our research area.

A. Code Clone Terminology

Usually there are only four types of clones. However,

people use different terms when they refer to the

clone relation for their experiments. The term exact

clone is used when they refer to the identical code

fragments. The term near-miss clone is used when

they refer to code fragments which are identical with

statements added, deleted or modified.

a. Exact Clones

If two or more code fragments are similar to each

other except with some differences in white spaces,

comments or layout, they are called exact clones.

Editing can be done in the copied fragment. There are

many editing activities such as changing the

comments (i.e. changing the line, position etc of the

comments) restructuring in layout like changing the

position of begin & end brackets, removing or adding

tabs, or changing language constructs like new lines,

blanks etc., Sometimes the usage of Line-based

methods may not enable the detection of the exact

clones that are edited through addition or removal of

new lines. This happens in changing the position of

language elements. The exact clones are generally

called as Type I Clones.

b. Renamed Clones

The term Renamed Clones generally used by people

when comments, whitespace, literal values or

identifier names changed in the coped code

fragments. That is the reason why a renamed clone is

necessarily as Type II Clone which is a

parameterized clone. All parameterized clones are

renamed clones but not all renamed clones are

parameterized clones. Consistent renaming which is

not essentially required in renamed clones case is a

necessity in the parameterized clones.

c. Parameterized clones

A renamed clone with systematic renaming is called

as a parameterized clone or P-match clone. The clone

detector identifies consistent name matching instead

of normalizing all identifiers or literals to some

special symbols. These clones are part of or a subset

of Type II Clones.

d. Near-Miss Clones

In clones if the copied fragments are very much

similar to the original code fragment, such clones are

called near-miss clones. In near-miss clones editing is

applied. This editing include activities like changes in

comments, layouts, changes in the position of the

source code elements by inserting or removing blanks

and new lines, changes in the identifiers, literals,

macros etc. All these editing activities indicate that

all renamed and parameterized clones are near-miss

clones. In near-miss clones, a copied fragment is not

an exact copy of the original because of slight

changes. However, the syntactical structure still

remains the same as its original. All the near-miss

clones are Type II Clones. Most of the authors also

assume that a minor modification in a statement or

even addition or deletion of statement in the copied

fragment will not bring any difference from the

original. Therefore, all such clones are near-miss

clones. This proves that Type III Clones can also be

called as near-miss clones.

e. Functional Clones

The clones which are restricted to refer to complete

functions or procedures are known as function

clones. A subset of structural clones is function

clones. Depending on the similarity level, function

clones can be of the four types of clones, as is the

case with structural clones. Generally, functional

clones fall under the category of Type IV clones.

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

 ISSN: 2249-2593 http://www.ijcotjournal.org Page 35

f. Clone Pair

When two or more code fragments are similar to the

maximum possible extent they are known as clone

pair (CP). Hence, pair of code portions or fragments

that are similar and identical to each other. These

clone pairs are critical to assess the efficiency of a

clone detection tool through precision and recall

values.

g. Clone Cluster

All the clone pairs identified in a system have code

portions. The union of all the code portions common

in those clone pairs is known as clone cluster (CC).

These clone clusters are used for analysis and

refactoring process in the later phases of clone

detection process.

B. Clone detection and its application

Apart from the immediate applications of the clone

detection techniques to code clone refactoring

process, clone avoidance and management, there are

various other domains where clone detection

techniques are going to help. There are other areas

which are related to clone detection through which

clone detection techniques can be benefitted from

[17].

To find malicious software, clone detection is useful.

It is easy to find the matched parts of one software

system with another one, by making comparison

between malicious software with other similar kind

of software.

Some of the applications of clone detection are as

follows:

a. Plagiarism detection in projects

In clone detection one of the closely related areas is

plagiarism detection [47]. These detection techniques

could be utilized in the domain of detecting

plagiarism. Token –based CCFinder[48] which is a

clone detection tool is most commonly used in the

detection of plagiarism.

b. Copyright infringement

 The detection of source code copy right infringement

is a problem. This is also viewed as a code similarity

measuring problem between software systems. Clone

detection tools might be applied or can easily be

executed in detecting copyright infringement [49]. It

is viewed as a serious problem in this competitive

world, where cyber laws are becoming much stronger

to protect copyright laws. This may happen with

many reasons like by accident, or by using same

logic by different programmers etc.

c. Clone detection in models

Clone detection can also be used for models [50]. In

every similar way, phenomenon occurs in models.

However, this is not restricted to code. Just as model

clones are detrimental to code quality. For data flow

model, general model, UML domain model clone

detection can be utilized.

C. Different Clone detection techniques

Various clone detection tools are available in the

clone literature. All these clones can be categorized

depending upon the method they used to detect the

clones presented in the code. Following sections

explain these categories.

a. Text based tools

In the clone detection process, before the actual

comparison is made, textual approaches use very

littleor no normalization/transformation on the source

code. The raw source code is utilized directly in most

of the cases. The person who pioneered text–based

clone detection is Johnson. His approach utilizes

“finger prints” on the substrings of the source code

statements [18].

First step is a fixed number of lines of code called

window is hashed. A sliding window technique along

with an incremental hash function is used. This is

done to identify the sequences of lines which have

the same hash value as clones. The sliding window

technique will be applied repeatedly with different

lengths in order to find clones of different lengths.

Manber also used fingerprints depending on the

subsequences identified by leading keywords [62].

This is done to trace out files which are similar.

Ducasse et al.[51] method is considered to be one of

the recent text–based clone detection approaches.

This approach is based on dot plots. The dot plot is

also called as scatter plot. This is a two dimensional

chart where source entities are listed by both X-axis

and Y-axis. The comparison entities are the lines of a

program in the approach proposed by Ducasse. If x

and y coordinate values re equal, there is a dot at the

co-ordinate (x, y). There must be the same hash value

for two lines if they have to be considered equal to

visualize clone information dot plots can be utilized.

Here, the clones are recognized as diagonals in dot

plots. Normalization is done to ignore white space

and comments. The identification of clones in dot

plots can also be automated. Ducasse et al. used

string based dynamic pattern matching which applies

on dot plots to compute total lines. The gaps with

diagonals indicate possible type 3 clones.

Wettel and Marinescu [52] used another approach to

locate near miss clones using the dot plots method.

This approach is an extension of the Ducasse et al.

approach. Beginning with the lines which have the

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

 ISSN: 2249-2593 http://www.ijcotjournal.org Page 36

same hash value, the algorithm chains neighboring

lines together are used to identify various kinds of

type 3 clones. Another approach which is similar and

which applies an n-neighbor approach in locating

near miss clones is SDD [63].

NICAD is another approach which is also text-based

[55]. This is necessarily a hybrid technique.

However, this approach exploits the uses of tree

based structural analysis which is based on a light

weight parsing technique in order to implement

flexible pretty printing normalization of code, source

code transformation and code filtering.

Marcus and Maletic [53] have applied Latent

Semantic Indexing (LSI) to source text to locate high

level conceptual clones like Abstract Data Types

(ADT) in the source code. This information retrieval

approach restricts its comparison to identifiers and

comments, two code fragments will be returned as

potential clones or cluster of some potential clones, if

there is high degree of similarity between the sets of

comments and identifiers.

b. Token based tools

By using compiler style lexical analysis, lexical

approaches start to transform the source code into a

series of lexical tokens [48]. The corresponding

original source code is returned as clones after the

sequence is scanned for subsequences of tokens

which are duplicated. The lexical approaches are

usually robust compare to minor code changes like

spacing, formatting and renaming than other textual

techniques.

Brenda Baker [54] is the researcher who pioneered

efficient token based clone detection. The lines of

source files are primarily divided into tokens by a

lexical analyzer in Baker‟s tool Dup. The tokens are

divided into parameter tokens and non-parameter

tokens. The non-parameter tokens are encoded using

a hashing function whereas the parameter-tokens are

encoded utilizing a position index for the tokens

occurrence in the line. These encoding abstracts

which are totally away from concrete names and

parameter values, but not in the order, which allows

continuously the parameters substituted

parameterized clones which are also known as Type

2 clones to be found.

The prefixes of the discovered sequence of symbols

are represented by a suffix tree, where the same set of

edges has a common prefix. If there is a common

prefix for two suffixes, the prefix occurs clearly more

than once and this can be regarded as a clone. This

technique permits one to trace Type 1 and Type 2

clones, and Type 3 clones can be traced by

concatenating Type 1 and Type 2 clones if the clones

are lexically not differ than the threshold defined by

user, away from each other. These can be better

exploited using dynamic programming technique.

This technique is later extended by Kamiya et al.[48]

utilizing additional source normalizations to erase

superficial differences. His technique named as

CCFinder. These changes can be statement

bracketing (e.g., if(x) y=10; vs if(x) ky=10; g). The

other basis for this technique is Gemini, which shows

near miss clones utilizing scatter plot or Dot plot

technique. RTF permits the uses to tailor the

tokenization for improved a clone detection using a

more memory efficient suffix-array instead of suffix

trees.

c. Syntactic approaches

Parsing is the technique which is used to convert the

source code programs into the required parse trees or

Abstract Syntax Trees (ASTs) in syntactic

approaches. These parse trees or abstract syntax trees

can be processed utilizing either structural metrics or

tree matching to find the clones present in the source

code.

Finding similarities between sub trees is the basic

idea behind tree-based techniques or tree-matching

approaches. The literal values, names of the variables

and other leaves or tokens in the source code may be

abstracted in the basic construction or representation

of the tree. This allows more sophisticated clone

detection process.

One of the existing tree-matching clone detection

approaches is Baxter et al.‟s CloneDr [9]. In his

approach he used a compiler generator to generate a

constructor for the annotated parse trees. Hashing is

then used to cluster the sub trees into buckets. Sub

trees are then compared to each other within the same

bucket by a tolerant tree matching algorithm. Though

the use of hashing is optional but it reduces the total

number of tree comparisons drastically.

The same approach has been adapted for Abstract

Syntax Tree –based clone detection by Bauhaus [56]

as CCDIML. The basic difference between CloneDr

and CCDIML is CCDIML‟s modeling of sequences,

which makes easy to search in groups of sub trees

that form clones together and its accuracy in

matching of trees.

Yang [57] proposed a dynamic approaching of

programming for discovering the syntactic

differences in similar sub trees comparison. His

approach CDIFF is not known for clone detection but

the technique can be used for clone detection.

Whaler et al. [58] find parameterized clones along

with exact clones by converting AST to XML at a

higher level of abstraction using a data mining

technique to detect code clones. Evans et al. [59]

proposed a structural abstraction, that allows the

variation in arbitrary sub trees than just leaves or

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

 ISSN: 2249-2593 http://www.ijcotjournal.org Page 37

tokens for handling near –miss clones along with

exact clones using gaps.

To reduce the complexity of complete sub tree

comparison, some of the recent researchers used an

alternative tree representation. In this approach,

according to Koschke et al. [37] used AST sub trees

which are serialized as sequences of AST nodes for

which suffix trees are constructed after words. This

approach makes to discover the syntactic clones at

the pace of token based techniques. Another

approach proposed by Tairas and Gray which based

on Microsoft Phoenix framework [60] detects

function level clones using suffix trees.

d. Metric based approaches

The collection of number of metrics for given code

fragments and comparing their metric vectors instead

of comparing code or Abstract syntax trees directly is

known as metric based technology. A method which

is a well-known method in the literature of code

clone uses fingerprinting functions and metrics

calculated for their syntactic units. These units

consist of class, method, function and statements

which yield values that can be compared to detect

clones.

Generally, parsing of source code to an Abstract

syntax tree or Control Flow Graph (CFG) is

happening first, and then calculation of the metrics is

taking place. Mayrand et al.[61] use many different

metrics to find functions as clones which has similar

metric values. These metrics are calculated using

layout, names, control flow and expressions of the

functions. The functional clone can be discovered as

a pair of total function bodies along with similar

metric values.

Davey et al.[64] proposed a clone detection approach

which detects near-miss clone, parameterized and

exact clones. In this method first computation of

certain features of blocks of code and then process

some training to neural networks to identify similar

blocks depending on features. To find duplicate web

pages and clones in the content of the web

documents, the metric based clone detection

approaches can be applied.

D. Clone detection techniques and tools

Clone detection techniques try to find duplicated

code. These might undergo some minute changes

later. To make out copy –past –adapt code and to

substitute it by a single procedure is the typical

motivation for clone detection. The code in large

software system which is modified and replicated by

hand is found by clone detection [29].

People usually copy the code which is conceptually

identifiable blocks and make very few changes. This

shows that the same syntax is noticeably repeated.

Clone detection can identify all such things. The

presence of a useful problem domain concept is an

indication of each identified clone. Simultaneously

this provides an example for implementation. The

parameters or points of variation can be identified by

the differences between the copies. The product line

development of clones can be enhanced in several

ways.

Some of them are removal or redundant code,

reducing maintenance costs, identifying domain

concepts for using them in the present system or the

next and identifying parameterized reusable

implementations [30]. Detection of code clones helps

in software development and maintenance of tasks

including identification of refactoring candidates,

location of potential bugs and finally understanding

software evolution. Many clone detectors are based

on the similarity of text [31].

The productivity of software maintenance is

hampered by cloning in classical code –based

development environments. This is because reforms

to cloned code are error –prone as they should be

carried out multiple times for all instances of a clone.

Therefore, the software engineering community

promoted a multitude of approaches and strong tools

for detecting code clones [32]. The various sections

of code which occur in multiple locations of a

program are code clones. The purpose of using clone

detection tools is to search for clones automatically

and to report any identified clones back to the user.

Apart from the source file names and starting and

ending of line locations of a single clone instance,

various clones are listed together in the textual

representation of the result. Clone detection results

can be represented graphically. A popular way of

graphical representation of clone detection results is

scatter plot. In a scatter plot, the duplicate sections of

code are identified as a sequence of dots connected in

a graph [33]. Some Type 2 clones and most of Type 3

clones are not identified by fast algorithms. Those

that targeted to find Type 3 clones using dependence

–based algorithms might locate Type 3 clones but at a

very high computational cost. Therefore, the present

state of the art shows the software engineers status

with a classic „speed –quality‟ trade off.

Code clones are essential to be tracked, managed and

if possible it should be removed through refactoring

depending on feasibility. The IDEs should unite to

lend support for all such activities for clubbing clone

management, with actual development effort.

However, most of the clone detectors are promoted as

separate tools. There are only few tools that are

integrated along with IDEs. These tools are all the

time focused in the detection of Type 1and Type 2

clones. They are also expected to offer enough

support for flexible code clone management and

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

 ISSN: 2249-2593 http://www.ijcotjournal.org Page 38

refactoring[34]. In this point of view, clone detection

techniques are outstanding for two reasons. One is

occurrence of code cloning within scattered cross –

cutting concern implementation.

In the first instance, scattered code is not properly

modularized. There are many reasons for that. One

reason for this lack of modularity is missing features

of the language that has to be implemented.

Exception handling is an example for this. Other

reason for that is the way the system was designed. In

either of the cases developers are not able to reuse the

concerned implementations using the language

module mechanisms. Hence, the developers are

compelled to write the same code over and over

again. This results in the practice of copying existing

code fragment and modifying it slightly to their needs

[35]. The improvement of quality of source code by

refactoring cloned code fragments is a major

application of clone detection [36].

a. Taxonomy of detection techniques

There are several properties or dimensions for each

of the clone detection techniques using these

properties, a particular technique can be classified.

For instance, how it does, what it does etc., some of

the properties are discussed below.

Source transformation/Normalization:Before

applying the actual comparison, instead of directly

working in the raw source code, each approach uses a

kind of transformation or filtering or normalization.

Some approaches utilize comprehensive

transformation where as some just remove white

spaces or comments. This is done to evolve an

alternative form of code representation suitable for

tracing target clone types for the reengineering

purpose and the comparison algorithm. Hence, source

transformation / normalization is used for a specific

method with all the above said properties.

Source representation:By utilizing various types of

transformations /normalizations or filtering an apt

code representation is procured to meet the

requirements of the target algorithm which is used for

comparison of the source code. This means that code

representation is used for comparison phase.

Comparison granularity:Various algorithms work on

diverse code representations on different levels of

granularity. The granularity of one source code line is

taken up by some algorithm and AST /PDG nodes are

taken up by others. With the use of this property, the

type of code clone granularities used for a specific

technique in the comparison phase is revealed.

Comparison algorithm:In the detection of clones of

various types, one of the major concerns is choice of

the algorithm. All the algorithms from diverse areas

are taken into consideration for clone detection. For

instance, the sequence matching algorithm is used by

some approaches. This sequence matching algorithm

is usually applied in the biological science for DNA

sequencing. There are other algorithms like data

mining /information retrieval algorithms which are

used for other applications. With the use of this

property, the kind of comparison algorithm used for a

particular method is revealed.

Computational complexity:The major concern is

computational complexity of a clone detection

technique should scale up to identify clones in large

software where millions of lines of code exist. The

kind of transformations and the comparison

algorithm used ultimately decide the complexity of

an approach. With the use of this property, the overall

computational complexity required for a particular

method is revealed

E. Related works

A lot of research has been done related to the

detection of clones. Utilization of artificial

intelligence techniques like Abstract Syntax Trees,

Kclone, Frequent Itemset, Substring Matching

techniques has attracted the attention of researchers.

A review of related literature is discussed below:

According to Rainer Koschke et al. [37] reuse of

software through copying and pasting was a constant

plague in software development in spite of the fact

that it leads to serious maintenance problems.

Different techniques are proposed to locate the

duplicated redundant code. This is also known as

software clone. Rainer compared all the techniques

and proved that token –based clone detection on

suffix trees is tremendously quick. However, it gives

clone candidates which are usually non syntactic

units. The current techniques which are based on

abstract syntax trees locate syntactic clones. These

syntactic clones are less efficient. It enables how to

make use of suffix trees in order to locate clones in

abstract syntax trees. This new method could find

syntactic clones in linear time and space. Many large

case studies results are reported. The new technique

is used to compare using the Bellon bench mark for

clone detectors.

StephaneDucasse et al. [38] put forward the proposal

that there can be diverse problems for the

maintenance of software if duplicated code is used. It

is really difficult to make out in large software

systems various techniques are developed to locate

software clones. Some of them are not only highly

sophisticated but also very expensive to execute and

adapt. There are some techniques which are very easy

to implement. They are light weight techniques,

which are based on simple string matching

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

 ISSN: 2249-2593 http://www.ijcotjournal.org Page 39

algorithms. However, these techniques may not be

effective. A simple string –based approach is used to

a number of languages such as JAVA, PYTHON,

COBOL, C, C++, SMALL TALK, PASCAL AND

PDP-II ASSEMBLER.

The time taken to adapt the approach to a new

programming language was less than 45 minutes in

each case. In the experiment, assessment of the

quality of clone detection for various case studies

was done. A variety of simple variants of string –

based clone detection techniques are used to bring

normalization to differences which occur because of

common editing operations. The results showed that

a clone detection technique which is not expensive

usually receives high recall value and acceptable

precision value. An unacceptable number of false

positives may come up if the code is excess

normalized before comparison.

According to Chanchal Kumar Roy et al. [39] various

techniques and tools for detecting software clones

have been proposed. In his research in order to

organize a large amount of information into a

framework which is conceptual and coherent a

qualitative comparison and assessment of the current

state of the art is provided in clone discovering

techniques and tools.

The back ground concept, a generic clone detection

process and taxonomy of present techniques and tools

are discussed. There are two dimensions in which

classification, comparison and evaluation of the

techniques and tools can be done. First the

approaches are classified and compared depending on

the number of facets that has a group of attributes.

Secondly, the classified techniques and tools are

evaluated qualitatively. This is done with respect to

classification of editing scenarios designed for model

the creation of all four types of clones (i.e. type 1,

type 2, type 3, and type 4). The research has also

shown how the results can be used to choose the

appropriate clone detection technique or tool of a

particular goals and constraints. There are two major

contributions for this paper. They are i. classification

of clone detection techniques and tools using a

schema and classification of present clone detectors

based on this schema. ii. A classification of editing

scenarios which produced various types of clones and

evaluation which is qualitative for the present clone

detectors depending on the taxonomy.

According to YueJia et al. [40] for all the

applications of detection of clones, it is necessary to

identify algorithms which are efficient and precise.

His work specifies a new algorithm, Kclone for

detection of clones which includes a new

combination of lexical analysis and local dependence

analysis to get exact result by achieving high

precision without losing speed. The initial results of

case study implementing Kclone and its experiments

have been dealt in detail. The results show that

Kclone can be able to detect type 1, type 2 and type 3

clones when compared to PDG –based and token –

based techniques. The results show the ability of the

performance of an initial empirical study of the

Kclone when compared to CCFinderX.

In the research work carried out by R.R.Brooks et al.

[41] presented that, the cloning activity in adverse

captures a sensor node, modifies its programs, creates

number of clones of these and inserts these clones on

to the network. The network sensor processing is

subverted from within by the cloned nodes. In

another paper, they showed the detection and

removal of clones from sensor networks by using

security methods which have random key pre

distribution measures of security.

Clone codes consisting of keys are detected by

utilizing authentication statistics based on the usage

frequency of the keys. The random key pre

distribution literature for its consistency using

random key pre distribution technique and ease of

explanation, the network used in that publication is

Erdos-Renyetopology[65]. In this topology if two

nodes need to be connected, the probability for this

connection in the network is uniform. But the sensor

nodes communication ranges are very limited. For

this reason the topology has failed. In Brook‟s article,

the application of clone detection technique was more

realistic in network topologies. Adhoc and grid

topologies shows node connectivity patterns of the

networks of different nodes with range limits. This

approach provides analytical methods for selecting

detection threshold which accurately detects code

clones. But they used only simulators to verify the

method. In addition the other limitations of this

approach are a number of nodes which can be

inserted without properly being detected.

In his research Shinji Kawaguchi et al. [42] proposed

that the maintainability and reliability is decreased

for the software programs because of code clones.

This is a major factor for development and cost of the

maintenance phase. A new code clone detection

/modification tool SHINOBI was introduced. This

tool was designed to help in the recognition and

highlighting of code clones for software maintenance

tasks. SHINOBI had implemented as an add–in for

Microsoft Visual Studio which reports modified

snippets of clones in real time.

According to Nam H.Pham et al. [43] the important

development framework for the maintenance of large

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

 ISSN: 2249-2593 http://www.ijcotjournal.org Page 40

scale software is Model Driven Engineering (MDE).

Earlier researches have reported that cloning occurs

in Model Driven Engineering just as it happens in

traditional code based development. Not enough

work has been done on clone detection with

specifications on the precision value of the clone

detection and completeness. This paper came up with

a new tool for detection of clones i.e. ModelCD for

Matlab /Simulink models. This tool enables the

detection of not only exactly matched clones but also

approximate model clones in an efficient and

accurate method. The ModelCd consists of two new

graph based algorithms discover clones

systematically and incrementally with a maximum

extent of accuracy, completeness and scalability. An

evaluation is done empirically with diverse

experimental studies on different real world systems.

This was done not only to show the usefulness of the

approach but also to compare the performance of

ModelCD with the current existing tools.

Kodahai.E et al. [44] proposed clone detection has

been in practice for the past ten years. This paved

way for better results but at the same time increased

complexity. Majority of the approaches confined to

find program fragments which are same in the syntax

or semantics. There were similarities between the

candidate that were actually clones and the fraction

of actual clones. In his paper, a new approach is

suggested and this approach is metric based

approach. This enables the textual comparison of the

source code which helps in the detection of type IV

functional clones in a procedure oriented

programming language source code like C has been

proposed. Different metrics which are suitable to

discover the degree of clones in the programming

language were formulated and their metric values

were used during the process of clone detection.

When it compared with other approaches, this

approach is considered to be very less complex and it

provides more efficient and accurate results in the

way of clone detection. The results of this method

were compared with the two existing methods for a

open source project wetlab.

ArmijnHemel et al. [45] proposed that the software

which is in binary form uses third–party packages

without taking into consideration of their licensing

terms. For example, many firmware consumer

devices developed using Linux Kernel. But, most of

these are not followed the General public license

requirements of the GNU organization. The license

violations are usually accidental. For instance, when

the binary code from suppliers received by the

vendors , there is no hint about its provenance. In

order to trace out such violations, the Binary Analysis

Tool (BAT) is developed. This system helps in

detection clones in binaries. The firmware image

attempts in detection cloning of code from the

repositories of packages in binary form and source

code. There were three clone detection techniques

proposed by BATs clone detection. The effectiveness

of these clone detection techniques have been

evaluated and compared. They are scanning for string

literals, detection of similarities and data compression

using computing binary deltas.

According to Kodhi E et al. [46] a clone detection

approach enables to reuse the code fragment in order

to maintain the application. The clone detection

techniques have identifies different kinds of clones.

Clone detection enables better results and focused on

complexity reduction of the work. The detection

process becomes easy and efficient when a different

clone detection tool is used. In the existing system,

the focus is on line by live detection. Sometimes to

find out the clone in the system, token based

detection is used. The system will take long time to

do all this.

When the fragment of code doesn‟t match with the

exact code, however the functionalities bring out the

similarities. The present system doesn‟t trace out the

clones in it. This paper proposed an analysis in

combination to detect all kinds of clone in a set of

fragment of a source code. This enables better

detection of all types of clone. During the detection

process different semantics had been formulated and

various values were used. There is less complexity in

tracing out the clones and giving correct results.

F. Clone Detection Evaluation

There are many clone detection techniques existing

and their corresponding tools. A comparison of these

techniques or tools is worthy in order to choose right

technique for a particular purpose. There are different

parameters with which these tools can be compared.

These parameters are usually called as clone

detection challenges. Following are some of the

parameters with which we can compare the tools.

Portability:Any tool should be portable in terms of

different programming languages. Having hundreds

of programming languages in use with several

differences (dialects) among them, a clone detection

tool required to be portable and easily configured for

several languages and dialects showing syntactic

variations of those languages.

Precision:Any tool must be sound enough that it can

detect less number of false positives. Meaning, the

tool should find code clones with higher precision.

Most of the times this precision value along with

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

 ISSN: 2249-2593 http://www.ijcotjournal.org Page 41

recall value will be used as a measurement to assess

the efficiency of a clone detection tool.

Recall:Any tool should be capable enough to find

most of the clones in a system. Duplicated code

fragments may not textually similar, but editing

activities on the copied code fragments may mislead

us to compare the similarity with the original code

fragment, but it should consider as a clone. A clone

detection technique that is said to be good must be

robust enough to identify such clone relationships

which are hidden.

Scalability:Any tool must be capable enough of

finding code clones in a large code bases as the

duplication of code is the most problematic in large

and complex software system. A tool should handle

complex and large systems with efficiency in terms

of memory. Computational time is another concern of

efficiency of the tool. In this research work main

focus is on efficiency of the tool with different sizes

of the code.

Robustness:As we discussed earlier any tool should

be robust enough in terms of various editing activities

that might apply on a copied fragment. i.e., it must

detect different types of clones or all four types of

clones with high precision and recall values.

G. Refactoring

Refactoring is the process of rectifying the negative

effect of code duplication. In software code clone

literature various types of refactoring approaches

have been mentioned. In this section we are

discussing approaches which we have used in our

method.

a. Types of Refactoring

In order to maintain speed in software development a

good design is necessary. The process of refactoring

enables the programmer to build software more

quickly, for refactoring prevents the design from

decaying.

Fowler[11] analyzed in his book about the common

mistakes in coding. These mistakes are mentioned as

bad smells of coding patterns.The book clearly

mentioned about 22 bad smells (code patterns that

need to be refactored) and 72 refactoring patterns

(modification techniques to erase bad smells) are

used to remove these bad smells. As per this book,

the top position of the bad smells is nothing else than

duplicated code. There are different patterns that are

used to remove code clones. The following sections

explain these patterns.

Extract method: To enhance the readability,

understandability and maintainability of a code clone,

extract method is used. This method is applied to a

lengthy method or sometimes to a complex function.

Even to merge the code clones, this method can be

used. Figure 2.1 illustrates an example of extract

method. There are duplicated instructions for the two

methods before the refactoring is done. Once the

refactoring is done, the duplicated parts are used as a

new method. A caller statement of the new method

replaces the duplicated code.

Figure 2.1 Example of extract method

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

 ISSN: 2249-2593 http://www.ijcotjournal.org Page 42

Pull up method: A method in which a class is moved

to its parent class is known as pull up method. When

there are similar methods for many child classes, an

effective refactoring way is to change them to the

common parent class. When the similar methods

have the same body, which suggests that there is a

copy and paste, the easiest way to identify is to use

the pull up method. Figure 2.2 shows an example of

pull up method. In the figure, before refactoring is

done, two classes have identical methods (Salesman

and Engineer classes). The duplicated code could be

eliminated in these classes by pulling them up to the

common parent class (Employee class).

Figure 2.2 Example of pull up method

Move method: Move method is almost the same as

pull up method. The only difference is that duplicated

methods are changed to a new class, but not the

parent class, which is an extended version by the

current class. Pull up method follows the principle of

inheritance but not move method. Sometimes

programming environment forces us to use move

method rather than pull up method.

Extract superclass: There cannot be a common

parent class when two or more classes have similar

functionalities. In such instances extract super class

can eliminate the duplicated code. The programmer

first can create a class which will be a parent class to

both the classes and then use pull up method to each

duplicated method.

However we are using only Precision and Recall to

prove the efficiency of the model that we proposed.

This research work is limited to compare these two

values with the existing models.

II. Conclusion

This paper presents the review of literature to

encourage the research in the area of code cloning. It

is also mentioned the scope of solutions to reduce the

maintenance complexity in the form of

refactorization of discovered clones

References
[1] IEEE. Standard for Software Maintenance.IEEE Standard

1219, 1998.

[2] ISO/IEC. Software Engineering - Software Maintenance.
ISO/IEC 14764,1999.

[3] L. Arthur. Software Evolution: The Software Maintenance

Challenge. Wiley,1988.
[4] S. W. L. Yip and T. Lam.A software maintenance survey. In

Proc. of the 1stAsia-Pacific Software Engineering

Conference, pages 70–79, Dec 1994.
[5] S. Chidamber and C. Kemerer.A metric suite for object-

oriented design. IEEE Transactions on Software

Engineering, 25(5):476–493, Jun 1994.
[6] ClearCase. http://www-

306.ibm.com/software/awdtools/clearcase/.

[7] Robert Tairas, “Clone detection and refactoring”, Proceeding
of OOPSLA '06 Companion to the 21st ACM SIGPLAN

symposium on Object-oriented programming systems,
languages, and applications, pp. 780-781, New York, USA,

2006

[8] Chanchal K. Roy, James R. Cordya and Rainer Koschkeb,
“Comparison and Evaluation of Code Clone Detection

Techniques and Tools: A Qualitative Approach”, Journal

Science of Computer Programming, Vol. 74, No.7, pp. 470-

495, May 2009.

[9] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo

Sant Anna and Lorraine Bier, “Clone Detection Using
Abstract Syntax Trees”, Proceedings of the International

Conference on Software Maintenance, pp. 368, Washington

DC, USA 1998
[10] G.Anil Kumar, Dr.CRK.Reddy, Dr.A.Govardhan “Code

duplication in Software Systems: A survey”, International

Journal of Software Engineering Research & Practices Vol.2,
Issue 1, Jan 2012

[11] M. Fowlor. Refactoring: improving the design of existing

code. Addison Wesley, 1999.

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

 ISSN: 2249-2593 http://www.ijcotjournal.org Page 43

[12] R. H. Page. http://www.refactoring.com/.

[13] MagielBruntink, Arie van Deursen,Remco van Engelen, and
Tom Tourwe, "On the Use of Clone Detection for Identifying

Crosscutting Concern Code", Ieee Transactions On Software

Engineering, Vol. 31, No. 10,pp. 804-818, October 2005
[14] Abouelhoda M.I., Kurtz S.andOhlebusch E, "The enhanced

suffix array and its applications to genome analysis", In Proc.

Workshop on Algorithms in Bioinformatics, vol. 2452,pp.
449–463, Berlin, 2002

[15] Hamid Abdul Basit and Stan Jarzabek, "Detecting Higher-

level Similarity Patterns in Programs", European Software
Engineering Conference and ACM SIGSOFT Symposium on

the Foundations of Software Engineering, pp 1-10 Lisbon,

Sept. 2005
[16] Lingxiao Jiang, Zhendong Su and Edwin Chiu, “Context-

based detection of clone-related bugs”, Proceedings of the

6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The

foundations of software engineering, pp. 55 – 64, New York,

USA, 2007.

[17] Chanchal Kumar Roy and James R Cordy, “A Survey on

Software Clone Detection Research”, Computer and

Information Science, Vol. 115, No. 541, pp. 115, 2007
[18] J Howard Johnson. Identifying Redundancy in Source Code

Using Fingerprints. In Proceeding of the 1993 Conference of

the Centre for Advanced Studies Conference (CASCON'93),
pp. 171-183, Toronto, Canada, October 1993.

[19] Zhenmin Li, Shan Lu, SuvdaMyagmar, and Yuanyuan Zhou.
CP-Miner: Finding Copy-Paste and Related Bugs in Large-

Scale Software Code. In IEEE Transactions on Software

Engineering, Vol. 32(3): 176-192, March 2006.
[20] G.Anil Kumar, Dr.CRK.Reddy, Dr.A.Govardhan “An

Efficient Method-Level Code Clone Detection Scheme

Through Textual Analysis Using Metrics”, International
Journalof Computer Engineering & Technology, pp 273-288,

Chennai, India.

[21] Elizabeth Burd and Malcolm Munro.Investigating the
maintenance implications of the replication of code.In

Proceedings of the 13th International Conference on

Software Maintenance (ICSM'97), Bari, Italy, September
1997.

[22]G.Anil Kumar, Dr.CRK.Reddy, Dr.A.Govardhan “code clone

detection with refactoring support through textual analysis”,
International Journal of Computer Trends and Technology-

Volume2 Issue2- 2011

[23] Matthias Rieger. Effective Clone Detection Without
Language Barriers. Ph.D. Thesis,University of Bern,

Switzerland, June 2005.

[24] MagielBruntink. Aspect Mining using Clone Class
Metrics.In Proceedings of the 1stWorkshop on Aspect Reverse

Engineering, 2004.

[25] MagielBruntink, Arie van Deursen, Remco van Engelen,
Tom Tourwe. On theUse of Clone Detection for Identifying

Crosscutting Concern Code.Transactions onSoftware

Engineering, Volume 31(10):804-818, October 2005.
[26] Andrew Walenstein and ArunLakhotia. The Software

Similarity Problem in Mal-ware Analysis. In Proceedings

Dagstuhl Seminar 06301: Duplication, Redundancy,

andSimilarity in Software, 10 pp., Dagstuhl, Germany, July

2006.

[27] GiulianoAntoniol, Gerardo Casazza, Massimiliano Di Penta,
Ettore Merlo. ModelingClones Evolution through Time

Series. In Proceedings of the 17th IEEE

InternationalConference on Software Maintenance
(ICSM'01), pp. 273-280, Florence, Italy, November 2001.

[28] W-K. Chen, B. Li, and R. Gupta. Code Compaction of

Matching Single-Entry MultipleExit Regions. In Proceedings
of the 10th Annual International Static Analysis Symposium (

SAS'03), pp. 401-417, San Diego, CA, USA, June 2003.

[29] MagielBruntink, Arie van Deursen,TomTourwe and Remco

van Engele, "An Evaluation of Clone Detection Techniques
for Identifying Crosscutting Concerns", Proceedings of the

20th IEEE International Conference on Software

Maintenance, pp. 200- 209,Washington DC, USA 2004
[30] Ira D. Baxter and Dale Churchett, "Using Clone Detection to

Manage a Product Line", Clone detection using abstract

syntax trees, pp. 1-3,1998
[31] HeejungKimy, YungbumJungy, SunghunKimx and

Kwangkeun Yi, "MeCC: Memory Comparison-based Clone

Detector", 33rd international conference on software
engineering, Waikiki,Honolulu, Hawaii, May 21-28,2011

[32] Florian Deissenboeck, Benjamin Hummel, ElmarJurgens,

Bernhard Schatz, Stefan Wagner, Jean-François Girard and
Stefan Teucher, "Clone detection in automotive model-based

development", Proceedings of the 30th international

conference on Software engineering, pp. 613-622,New York,
NY, USA,2008

[33] Robert Tairas, Jeff Gray and Ira Baxter, "Visualization of

clone detection results",Proceedings of the 2006 OOPSLA

workshop on eclipse technology exchange ACM, pp 50-54,

New York,USA,2006

 [34] Minhaz F. Zibran and Chanchal K. Roy, "Towards Flexible
Code Clone Detection, Management, and Refactoring in

IDE", Fifth International Workshop on Software

Clones,Waikiki, Hawaii, USA,May 23,2011
[35] M. Kim, L. Bergman, T.A. Lau, and D. Notkin, “An

Ethnographic Study of Copy and Paste Programming
Practices in OOPL,” Proc. Int‟l Symp. Empirical Software

Eng. (ISESE ‟04), pp. 83-92, Aug. 2004

[36] M. Rieger, S. Ducasse, and G. Golomingi, “Tool Support for
Refactoring Duplicated OO Code,” Proc. European Conf.

Object- Oriented Programming (ECOOP ‟99), pp. 177-178,

June 1999.
[37] Rainer Koschke, RaimarFalke and Pierre Frenzel, "Clone

Detection Using Abstract Syntax Suffix Trees," In Proc. of

the 13th Working Conference on Reverse Engineering,
Benevento, pp. 253 - 262, Oct 2006.

[38] StephaneDucasse, Oscar Nierstrasz and Matthias Rieger,

"Research On the effectiveness of clone detection by string
matching," Journal of Software Maintenance and Evolution:

Research and Practice, Vol. 18, No. 1, pp. 37-58, 2006.

[39] Chanchal K. Roy, James R. Cordy and Rainer Koschke,
"Comparison and Evaluation of Code Clone Detection

Techniques and Tools: A Qualitative Approach," Science of

Computer Programming, Vol. 74, No. 7, Feb 2009.
[40] YueJia, David Binkley, Mark Harman, Jens Krinke and

Makoto Matsushita, "KClone: A Proposed Approach to Fast

Precise Code Clone Detection," In Proc. of the Third
International Workshop on Detection of Software Clones

(IWSC 2009), pp. 12-16, 2009.

[41] R. R. Brooks, P. Y. Govindaraju, M. Pirretti, N.
Vijaykrishnan and M. Kandemir, "Clone Detection in Sensor

Networks with Ad Hoc and Grid Topologies," International

Journal of Distributed Sensor Networks, Vol. 5, pp. 209–223,
2009.

[42] Shinji Kawaguchi, TakanobuYamashinay, HidetakeUwanoz,

KyhoheiFushida, Yasutaka Kamei, MasatakaNagura and

Hajimu Iida, "SHINOBI: A Tool for Automatic Code Clone

Detection in the IDE," In Proc. 16th Working Conference on

Reverse Engineering, pp. 313 - 314, Oct 2009.
[43] Nam H. Pham, HoanAnh Nguyen, Tung Thanh Nguyen,

Jafar M. Al-Kofahi and Tien N. Nguyen, "Complete and

Accurate Clone Detection in Graph-based Models," In Proc.
of the 31st International Conference on Software

Engineering, Washington, DC, 2009.

[44] Kodhai. E, Kanmani. S, Kamatchi. A, Radhika.R and
VijayaSaranya. B, "Detection of Type-1 and Type-2 Code

Clones Using Textual Analysis and Metrics," In Proc. of the

2010 International Conference on Recent Trends in

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 1– January to February 2016

 ISSN: 2249-2593 http://www.ijcotjournal.org Page 44

Information, Telecommunication and Computing,

Washington, DC, pp. 241-243, 2010.
[45] ArmijnHemel, Karl TrygveKalleberg, Rob Vermaas, and

EelcoDolstrac, "Finding Software License Violations

Through Binary Code Clone Detection," In Proc. of the 8th
working conference on Mining software repositories, New

York, NY, May 2011.

[46] Kodhai.E, Perumal.A, and Kanmani.S, "Clone Detection
using Textual and Metric Analysis to figure out all Types of

Clones," In Proc. of the International Joint Journal

Conference on Engineering and Technology (IJJCET 2010),
pp. 99 - 103, 2010.

[47] F. Calefato, F. Lanubile and T. Mallardo, “Function Clone

Detection in WebApplications: A Semiautomated
Approach,” in Journal of Web Engineering, vol.3, no. 1, pp

3–21, 2004.

