
International Journal of Computer & Organization Trends –Volume 5 Issue 4 July to August 2015

ISSN: 2249-2593 http://www.ijcotjournal.org Page 20

How to Protecting Kernal Code and Data
Nisar Ahmed, Muhammad TehseenQureshi, Hafiz YasirRana BadarqaShakoor

Mohi-ud-Din Islamic University, Nerian Sharif, AJ&K, Pakistan

Department of Computer Science, University of Agriculture, Faisalabad, Pakistan

Department of Computer Science, Global Institute Lahore, Lahore, Pakistan

Department of Computer Science, University of Agriculture, Faisalabad, Pakistan

Abstract—Most of the computer having Von Neumann

Architecture nowadays facing the risk of attack of

modifying kernel code. It is due to same addresses space of

kernel code as well as data. In this paper, we discuss the

methods to protect kernel code as well as data. The main

theme behind this paper is how to make secure kernel code.

Keywords—Operating System; Kernel; Code; Data; Kernel

Protection.

I. INTRODUCTION

Two commonly used ways to make kernel codes
ecureare. The operating system provides itself or
some system reinforcement established by some
scholars. This method take some hard ware benefit
(on/off status of bits in segment table and page table
etc) to protect every inch of important areas of
memory. This ideal though works up to some extent
to secure kernel code but there are some boundaries
when fronting the risk of kernel rootkits. For
example, by the use of 32-bit machine via NX bit,
one must set some legacy CPU not maintained with
PAE. Even we make bits on using this method,
attackers can break this security. So that’s why this
method is not so good to protect the kernel code.

There is another conventional method called
kernel code integrity checking. It based on
complicated strategy and complex method of
detecting the change in kernel code. It also does
nothing to prevent the malicious code of attackers. It
may detect some modifications in kernel code but
this method does not know how these amendments
are prepared and do nothing for analyzing the
imposition and its retrieval.

We recommend a different tactic to secure the
code of the kernel. Harvard memory architecture
implemented to it. It takes a separate physical
memory area for kernel code and separate for data. It
ensures after booting of operating system, if some
illegal operation is performed on code of kernel, it
will be conveyed to some memory’s shadow which
is designed to coverall prohibited tasks. This tactic is
applied in Operating system and it can secure the
code of kernel unfluctuating the attackers have got
the upper most level of privileges. It also archives all
prohibited tries to alter code of the kernel during
illegal operations started which provides help ful
analysis report about intrusion. Attackers do not

guess that their illegal attempts have been captured
by System. This method takes some advantage of
hardware structures and simply enforces very trivial
overhead.

There creation of papers helters as follows. Part
II covers the risk model of paper. Part III sates
design of the system design and execution facts.
The assessment of our tactics presented in part IV.
Part V describes the limitations and future work.
Part VI stretches transitory explanation to associated
work and part VII is conclusion.

II. RISK MODEL

The active OS stuffs laden in memory are
modified by late stroot kits. Convention ally root kits
do not alter the code of the kernel directly. They add
spiteful code in the area of kernel data and then that
malicious code executed. In the same way some root
kits also have the volume to alter the kernel code.
The unsafe kernel of Linux do brk allows the
muggers to alter any pages bits of privilege in the
system that give access to alter any OS kernel’s data
structure or code. Some changes allow modifying
physical address related with respect to a virtual
address. If this modification is allowed to root kits,
severe damages can occur in operating system.

There are fewer attackers who are adopting the
traditional approach of code injection. More
attackers modify kernel code and other modern
techniques. Therefore it is very necessary to protect
kernel code. Root kits are our threat model in this
paper.

III.DESIGN OF SYSTEM AND ITS

IMPLEMENTATION

A. An Architectural Tactic

Harvard architecture take start from Harvard
Mark I computer. The Instruction and data occupied
separates paces and trails to CPU in this technique.

By using of von Neumann technique in the
Utmost current computers where data and code use
identical address space. The sharing of same address
space by instructions and data is root cause of
injection of malicious code. The Harvard
architecture provides the advantage of separate
address space for both data and instructions. Atupper

International Journal of Computer & Organization Trends –Volume 5 Issue 4 July to August 2015

ISSN: 2249-2593 http://www.ijcotjournal.org Page 21

most level Code cannot be used as data and further
moses facts cannot bet reated as instructions of
privileges to attackers. The code injection becomes
almost impossible in this way.

Some features of Harvard architecture are similar
like Von Neumann architecture such as separate data
/ instructor cache and separate data / instruction
TLBs (translation look a side buffer). These feature
help us to make kernel more secure.

The simplest way to implement Virtualization is
by using VMH. Though prominence to pen source
Operating system (Xen [3] and KVM [8] still under
progress. They have not widely accepted. Most of
their features are not tested. In comparison, Linux is
widely accepted and well reputable to highest
ability. That’s why we adopt to build our virtual
environment in operating system rather than in
VMM.

B. Implementation Details

In our system, described infig2, Vis the linear
address space of kernel code). We have:

For instruction fetch:

Mapping_i(va)=paexec…………….(1) For

Data access:

Mapping_d(va)=paexec………………….(2

paexec€P_1, padata€P_DandP_1andP_D={}

P_I is for instruction physical address space P_D is

the Physical address special so called shadow

memory.

Once the method of protection adopted, it will
ensure the security of kernel code while in operating
system working. Normally execution of an instruction
is steps process which include fetch, decode, execute,
memory and write back. The separate cache and TLBs
are introduced to cover the two steps (fetch, memory)
which do not interfere each other.

The two corresponding PTE sinI-TLB and D-TLB of
aparticular linear address should be similar but there is
no way to ensure it. If we insist operating system to
provide two different page tables respectively for
fetch and memory steps, then the malicious code
operation to kernel and normal execution of kernel
will be according to contents of different physical
pages. In the same methodology, Mapping_I and
Mapping_ d are implemented. The steps are given
below.

When the system is started, al locate a continuous
area (called shadow memory) whose size is equal
to kernel code region. It is pointed by a pointer
variable Kernel _text _mirror. Kernel code is
copied there. There is a one to one correspondence

between the frames of shadow memory and the
frames of kernel code. Shadow
(ppn)=ppn+(mirror_start_text_start) (3) text_ start
is first frame number of the kernel code, mirror_
start is the first frame number of the shadow
memory, both memory are related with each other.

Inter change the ppn address of all kernel code with
shadow memory address temporarily, and then
load them to D-TLB.

Recover all the Kernel code bits that have been
replaced, and interchange the R/Wbitto0.

If the page fault occurs by over writing the kernel
code, modify the page fault handler of Linux,
modify the corresponding bit to1, then go to step
2and3.

The bits of Kernel code pages are in TLB for
their global bit is set commonly. If these pages are
modified or deleted accidently, they are set to read
only, page fault will be generated and double map in
go f address translation will occur against step 4 by
page fault handler.

This approach made little bit change in source
code of page initialization and page fault handler.
The changes of new code are not more than 200
hundred rows and checked and analyzed again and
again to adjust with kernel code and work properly.

IV. EVALUATION

A. Performance impacts

We are using our experimental plate form on Pentium

IV 3.0 G processor with 512 MB of RAM. In our first

experiment, the operating system we use is Fedora

Core 4 with a vanilla Linux kernel. The second

experiment use same system with modified kernel

code. Our studies prove that there are no substantial

differences in performance after changing the kernel

code in system calls and facilities of operating

system. Little bit difference is negligible. The full use

of TLB is the cause of negligible performance loss.

In the same way, the impact of kernel code in
D_TKB is minimal. The entries of PIV’s TLB is as
many as 128 the kernel code page’s only take few of
them and does not show any over head on
performance.

B. Case Study

We stretch awareness of new root kit by changing

adoring 0.56 to check the efficiency of system in our

review. The root kit is a kernel root kit on Linux. It

changes the entry address and also uses few system

calls. Runs over Linux new changed Ador-ng0.56. It

interferes with system calls codes by modifying the

contents of their pages to 0 by this OS break down.

International Journal of Computer & Organization Trends –Volume 5 Issue 4 July to August 2015

ISSN: 2249-2593 http://www.ijcotjournal.org Page 22

We installed the altered code on the Fedora Core 4

with Vanilla Linux deprived of our security

technique, the system Become crashed after

installation of root kit in our experiments. We

installed altered kernel code, the root kits installation

quiet succeeded on the same machine. The working

of machine and no error mentioned.

We checked the contents of file system. Found
the value of kernel_text_mirror and copy the shadow
memory contents by map. We can watch the
contents of shadow memory we real zeros which
show that any attack to change kernel code
redirected to shadow memory.

Our mechanism will redirect the attacker’s root
kits to additional area, thus makes the ineffective and
records their tries.

V. LIMITATIONS AND FUTURE WORK

Garfunkel and Rosenblum proposed VMM over
IDS. OS had compromised when it start working. A
Revirt which allows intrusion investigation by
virtual machine logging and replay VMM based
system implement by SamuelT. King. Its working
shows that consuming virtualization for security
determinations is useful.

RyanRileyadvisedatechniquetostopcodeinjection
occurrenceatuserlevelbyvirtuallydividingmemory.Itis
alike to our technique but there are some flaws in his
technique. Single step mode is mostly used for alter
the contents in TLB, due to fast context switch of
user processes its lowdown instruction execution and
cause of big over head and the performance.

Wursteretal. Pass over self-check-summing
appliesadis similar address translation method.
NathanE.Roshenblumma dean extension to Xenhy
per visor to apply context sensitive paging mapping
forth common resolution. After altering the target
program: they used common technique, they turned
on the technique of situation penetrating mapping to
stretch the self-checks umming am is apprehension
that the code of the program is none altered.

VI. CONCLUSION

We can make better the security of Linux kernel

by implementing some useful features of other

architectures to current X86. To save code of kernel,

the virtualization technology to apply a Harvard

memory use in this review. Von Neuman

architecture used ford signed OS architecture,

implements identical some over head and archives

the spiteful attacks to change code of kernel. This

tacticisuseful, easy and very effect as shown by

experiments.

VII. REFERENCES

[1] Z. Bai, L. Wang, J. Chen, L. Xu, J. Liu and X. Liu, “DTAD:

a Dynamic Taint Analysis Detector for Information
Security,” The Ninth International Confernce on Web-Age

Information Management, vol. 2,591-597, 2008.

[2] J. Sun, X. Li, H. Chen and H. Tan, “A Virtualized Harvard

Architectural Approach to Protect Kernel Code,” First

International Workshop on Education Technology and
Computer Science, 1020-1024, 2009.

[3] G. Junkai, J. Weiyong, “An Approach for Sensitive

Binary File Protection,” International Forum on Information
Technology and Applications, 716-718, 2009.

[4] H. Mohanty, M. VenkataSwamy, S. Ramaswamy, R.K.
Shyamasundar, “Translating Security Policy to Executable

Code for Sandboxing Linux Kernel,” Third UKSim European

Symposium on Computer Modeling and Simulation, 124-
129, 2009.

[5] S. Butt, V.Ganapathay, M.M.Swift and C. Chang,

“Protecting Commodity Operating System Kernels from
Vulnerable Device Drivers,” Annual Computer Security

Applications Conference, 301-310,2009.

[6] X. Jiang, Y. Solihin, “Architectural Framework for

SupportingOperating System Survivability,” NSFAward

CCF, 457-465, 2011.

[7] J. Li, Z. Wang, T. Bletsch, D. Srinivasan, M. Grace and X.

Jiang, “Comprehensive and Ef fi cient Protection of Kernel
Control Data,” IEEE Transactions on Information Forensics

and Security, vol. 6(4),1401-1417, 2011.

[8] B. Blackham, Y. Shi, S, Chattopadhyay, A.
Roychoudhury and G.Heiser, “Timing Analysis of a

Protected Operating System Kernel,”2011 IEEE 32nd Real-

Time Systems Symposium, 339-348, 2011.

[9] D. Stanley, D. Xu, E.H. Spafford, “Improved Kernel Security

ThroughMemory Layout Randomization,” IEEE, 2013.

[10] F. Yamaguchi, N. Golde, D. Arp and K. Rieck, “Modeling

and Discovering Vulnerabilities with Code Property Graphs,”

2014 IEEE Symposium on Security and Privacy, 590-604,
2014.

