An Automatic Detection and Assessment of Diabetic Macular Edema Along With Fovea Detection from Color Retinal Images
|
International Journal of Computer & Organization Trends (IJCOT) | |
© 2013 by IJCOT Journal | ||
Volume-3 Issue-1 |
||
Year of Publication : 2013 | ||
Authors : S.Fowjiya , M.Karnan ,R. Sivakumar |
Citation
S.Fowjiya , M.Karnan ,R. Sivakumar An Automatic Detection and Assessment of Diabetic Macular Edema Along With Fovea Detection from Color Retinal Images . International Journal of Computer & organization Trends (IJCOT), V3(1):49-53 Jan - Feb 2013, ISSN:2249-2593, www.ijcotjournal.org. Published by Seventh Sense Research Group.
Abstract
Diabetic macular edema (DME) is an advanced sym ptom of diabetic retinopathy which lead to vision loss. Here a methodology comprises of two stages is proposed. First stage is detecting of DME and the next stage is assessing the severity of DME.DME detection is carried out via a supervised learning approach A technique called feature extraction is introduced here to capture the global characteristics of fundus images .It will discriminate the normal images from DME images. A rotational asymmetry metric is used to assess disease sever ity by examining macular region symmetry.Along with this fovea de tection is also performed to make detecting process further easier
References
[1] LGiancardo, F. Meriaudeau, T. Karnowski, K. Tobin, E. Grisan, P. Favaro, A. Ruggeri, and E. Chaum, “Textureless macula swelling detection with multiple retinal fundus images,” IEEE Trans. Biomed. Eng. , vol. 58, no. 3, pp. 795 – 799, Mar. 2011.
[ 2 ] A .Rocha , T.Carvalho , S.Goldenstein, and J .Wainer, Points of interest and visual dicti onary for retinapa thology detection Ins t.Comput ., Univ.Campinas, Tech .Rep. IC - 11 - 0 7,Mar.2011 .
[5] Automatic Assessment of Macular EdemaFrom Color Retinal ImagesK. Sai Deepak* and Jayanthi Sivaswamy
[6] C. P. Wilkinson, F. L. Ferris, R. E. Klein, P. P. Lee, C. D. Agardh, M.Davis, D. Dills, A. Kampik, R. Pararajasegaram, and J. T. Verdaguer, “Propose d international clinical diabetic retinopathy and diabetic mac - ular edema disease severity scales,” Am. Acad. Ophthalmol., vol. 110, no. 9, pp. 1677 – 1682, Sep. 2003.
[7] R. F. N. Silberman, K. Ahlrich, and L. Subramanian, “Case for auto - mated detection o f diabetic retinopathy,” Proc. AAAI Artif. Intell. De - velopment (AI - D’10), pp. 85 – 90, Mar. 2010.
[8] M. Verma, R. Raman, and R. E. Mohan, “Application of tele ophthal - mology in remote diagnosis and management of adnexal and orbital diseases,” Indian J. O phthalmol., vol. 57, no. 5, pp. 381 – 384, Jul. 2009.
[9] M. D. Abramoff, M. Niemeijer, M. S. Suttorp - Schulten, M. A.Viergever, S. R. Russell, and B. van Ginneken, “Evaluation of a system for automatic detection of diabetic retinopathy from color fu ndus photographs in a large population of patients with diabetes,” J. Diabetes Care, vol. 31, no. 2, pp. 193 – 198, Nov. 2007.
[10] S. Philip, A. Fleming, K. Goatman, S. Fonseca, P. McNamee, G. Scot - land, G. Prescott, P. F. Sharp, and J. Olson, “The efficacy of auto - mated disease/no disease grading for diabetic retinopathy in a system - atic screening programme,” Br. J. Ophthalmol., vol. 91, no. 11, pp.1512 – 7, Nov. 2007.
[11] H. Jaafar, A. Nandi, and W. Al - Nuaimy, “Detection of exudates in retinal image s using a pure splitting technique,” in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2010, pp. 6745 – 6748.
[12] P. C. Siddalingaswamy and K. G. Prabhu, “Automatic grading of diabetic maculopathy severity levels,” in Int. Conf. Syst. Med. Bi ol. (ICSMB), Dec. 2010, pp. 331 – 334.
[13] C. I. Sanchez, M. Garca, A. Mayo, M. I. Lopez, and R. Hornero, “Retinal image analysis based on mixture models to detect hard exudates,” Med. Image Anal., vol. 13, no. 4, pp. 650 – 658, Aug. 2009
Keywords
Diabetic macularedema, hardexudates,rotational symmetry.diabeticretinopathy