Bionic Feet

Akash K Singh, PhD IBM Corporation Sacramento, USA

Abstract-In general, prosthetic feet can be classified in three categories. These are, following the time line: Conventional Feet (CF), Energy-Storing-and-Returning (ESR) feet, and recent socalled 'bionic' feet. Research studies have shown enhanced performance properties of ESR feet compared to early CF. However, even with the advanced technology today, none of the ESR feet is capable of significantly reducing energy cost of walking or enhancing amputee's gait pattern [1]. From the 1990s gradually more attention has been paid to the incorporation of active elements in prosthetics as passive devices are not capable of providing the amputee with sufficient ankle power during gait. Most of these bionic devices are still on research level nowadays but one can expect that they will become available on the market soon. In this paper, the evolution of prosthetic feet over the last two decades is reflected. The importance of mimicking human ankle biomechanics in prosthetic foot design is discussed. Prior work on both objective and subjective evaluation of TT (transtibial = through the lower leg) amputee gait when fitted with different prosthetic feet is reported.

Keywords- prosthetic feet, amputee, energy storage, energy return, metabolics,.

I. INTRODUCTION

It is common to replace the amputated limb by an artificial limb; a prosthesis. The selection of a prosthesis is highly dependent on the individual needs and abilities of the patient. Its function can vary from purely aesthetic to a functional necessity for a patient to retrieve independence in performing daily life activities. In case of a TT amputation, the amputee will be fitted with a 'lowerleg' prosthesis, which enables the prosthetic user to achieve normal walking after a rehabilitation period. The characteristics of a TT prosthesis directly influence walking pattern and thus, ample attention needs to be given to the prosthetic replacement of part of the amputated limb. Over the past decades several researchers have examined prosthetic gait in terms of kinematics, kinetics and energy expenditure. Human walking analysis show that the ankle produces substantially more work than knee and hip joint [2]. Winter [2] mentioned that the ankle joint muscles produce 540% more work than they can store during a gait cycle. The replacement of power generation is one of the biggest challenges in replicating normal gait by means of prosthetics. The impact of the absence of human anklefoot function may not be trivial in amputee gait research as foot motion relates to shock weight-bearing stability, absorption, energy conservation and propulsion during forward locomotion [3]. Therefore, it is strongly believed that a good understanding of human ankle-foot biomechanics provides the basis for the development of new prosthetic feet [4]. In this paper the authors

give an overview of the stateof- the-art in TT prostheses. The focus firstly lies on the comparison between normal and amputee gait. Then, the evolution from CF, via ESRF, up to current bionic feet is reflected. Furthermore, scientific outcome measures of walking with different prosthetic feet are presented.

II. BIOMECHANICS OF THE HUMAN ANKLE

For simplicity, ankle motion is commonly called flexion and extension in the sagittal plane. Since there is no uniform convention, definition of these terms has varied. Some researchers use the term flexion to motions that decrease the angle between the two bones (i.e., foot and tibia). Similarly, extension indicates straightening of the limb. Others use the reverse definition. The only recourse is to use the terms dorsalflexion (DF) and plantarflexion (PF) to signify upward and downward motion of the foot, respectively [3]. This convention is used throughout the paper. A description of the anatomical planes of the human ankle as well as a definition of the dorsalflexion and plantarflexion ankle movements reveals the human ankle moment versus human ankle angle characteristics for natural walking (1.5 m/s).

At heel contact (HC), complex interactions between bones, tendons and muscles in the ankle-foot structure provide shock absorption. From HC to foot flat (FF) the dorsalflexor muscles are active to both establish smooth touchdown of the foot and control the rate of PF. This phase is represented by line AB. After FF the leg rotates over the foot -which provides a stable support- under the control of an increasing plantarflexor moment. During this phase the ankle dorsalflexes and energy is stored (line BC). Once the plantarflexor moment has increased sufficiently, active and rapid PF of the ankle occurs (line CD). This is the most important energy generation phase as it contains about 85% of the total energy generated during the entire gait cycle. Plantarflexor moment ends when the foot leaves the ground; so called Toeoff (TO). During swing (represented by line DA) a limited plantarflexor moment is present due to the action of gravity. The hysteresis loop moves in a counterclockwise rotation. According to [4] the net energy 'generated' in the ankle system during stance can be found by examining the area covered by the moment versus angle curve. Consequently, the work generated during phase CD is more than the negative work stored during phases AB and BC. This implies that additional energy is provided along with the energy stored during AC to achieve the high plantarflexor moment in late stance.

A. Implications for prosthetic design

From an engineer perspective, is very useful for the conception of new prosthetic feet as it reveals the orresponding mechanical functions of the ankle-foot structure. The slope of the moment versus ankle angle curves reveals the intrinsic ankle joint stiffness and changes throughout a gait cycle [4]. One can feel that establishing comparable characteristics in prosthetic feet is of major importance to improve ampute gait. The following behavior is determined:

• during phase AB the ankle behaves like a linear spring;

• during phase BC the ankle acts as a nonlinear spring and energy is stored in the ankle musculature;

• from point C on additional energy is provided.

Based on these descriptions, prosthetic feet should have adaptable stiffness properties during walking. Moreover, they should be capable of providing a high torque output (as an example: a 80kg person needs an ankle torque of 136 Nm). During swing phase, the ankle joint position should be controlled in order to avoid drop foot at the next heel contact. The following sections reveal the evolution from conventional prosthetic feet to current feet with bionical technology. The prosthetic characteristics are presented and discussed in light of healthy ankle behavior.

III. CONVENTIONAL PROSTHETIC FEET

A. Background

Prior to the early 1980s, most prosthetic feet were designed with the goal of restoring basic walking and simple occupational tasks. The most common conventional prosthetic foot is the SACH foot which for years has been the industry standard. SACH is an acronym for 'Solid Ankle Cushioned Heel' which refers to a compressible heel wedge that provides "pseudo-plantar flexion" after heel strike. The rigid wooden keel provides midstance stability but little lateral movement. It is the simplest type of nonarticulated foot. The SACH foot is -still- prescribed frequently (especially in low income countries) because it is robust and inexpensive. Another frequently used conventional foot is the Single-Axis foot with a sagittal joint. However, the single-axis foot is heavier than the SACH foot, does not offer more lateral movement, and requires more frequent maintenance because dirt can foul the bumper mechanisms.

B. Stiffness Characteristics of Conventional Feet

A typical characteristic plot of walking with a conventional prosthetic foot (Single-Axis) at self-selected speed. This prosthetic foot behavior differs not much from normal human ankle behavior from HC to maximum plantarflexor moment. However, the moment value corresponding with point C is only

two-thirds of that noted during healthy walking. From point C on, one can see that the normal foot establishes PF relative to standing upright, whereas the prosthetic foot only comes back to its neutral position. This is a typical phenomenon in current prosthetic feet since they all are basically springs with fixed stiffness properties—that can only flex back to neutral position after being deformed. Since the net energy generated in the ankle system during stance can be found by examining the area covered by the moment versus angle curve, reveals a dissipation of energy in the system because the hysteresis loop moves in clockwise rotation.

IV. ENERGY RESTORING PROSTHETIC FEET

The desire of amputees to participate in sports, and the high demands of athletics, have resulted in the development of so called "energy-storing-and-returning (ESR)" feet, capable of storing energy during stance and returning it to the amputee to assist in forward propulsion in late stance. The introduction of the Seattle Foot in 1981 brought about the inception of the first ESR foot. The Seattle Foot incorporates a flexible keel inside a shell of polyurethane. It is this keel that flexes when loaded, acting as an elastic spring, returning part of the stored energy to the amputee later in gait. Other prosthetic foot manufacturers followed a similar strategy and incorporated a flexible keel surrounded by foam and/or a polyurethane cosmesis. Such feet include the Dynamic (Plus) Foot and C-Walk (Otto Bock HealthCare GmbH). SAFE (Campbell-Childs, Inc., White City, OR), Carbon Copy (Ohio Willow Wood Co., Mount Sterling, OH), STEN (Kingsley Manufacturing Co., Costa Mesa, CA), and others. The aforementioned 'early' ESR feet return a portion of the input work (provided by the weight of the body to load the "spring" into compression) to the amputee later in gait. However, the energy lost in the system as a result of friction remains high and is dissipated as heat and sound. A completely different prosthetic foot concept is commercially available since 1987. Flex-Foot Inc. came up with the Flex-Foot prosthesis with a flexible 100% carbon fiber shank and a heel spring. This device differs from others as it allows the entire prosthesis, rather than solely the foot part, to flex, store, and return energy to the amputee. In 1988, Springlite Inc. developed a prosthetic foot similar to the Flex-Foot. The Springlite Advantage DP Foot consists of a epoxy/carbon pylon that flexes during body weight acceptance but is a unique one-piece concept. Despite the fact that it is commonly used. however, it has received little attention in literature. Currently, other sophisticated designs such as Flex-Foot Axia, Modular II, and Flex-Sprint II are on the market and may have improved performance properties.

A. Effect on Gait characteristics and Metabolic energy costs

Various studies have been carried out in comparing gait characteristics and energy expenditure of walking with conventional feet to walking with ESR feet. In 1989. Menard [8] made biomechanical measurements on unilateral TT amputees who were considered for fitting with a Flex-Foot. Most of the subjects had been previously fitted with a SACH foot. During the study almost 70% felt their gait had improved. Of course, the user's perception is a subjective criterion. Objective gait analyses in this study revealed that TT amputees adopt a medial heel whip when wearing the Flex-Foot. Menard et al. attributed this phenomenon to the fact that the energy impulse occurred too close by the event of toe-off, and thus, too late in stance. The heel whip would then serve as a compensatory movement by the rest of the limb to dissipate this 'badly timed' propulsive force. However, they concluded that a propulsive force during late stance is appropriate and useful, and appreciated by almost all users. One of the key purposes of the study carried out by Nielsen [9], also in 1989, was to investigate differences in self-selected walking speed and energy expenditure during ambulation with a Flex-Foot versus conventional foot. Selfselected speeds for both Flex-Foot and SACH foot were below normal values, as reported earlier by Waters [10]. In contrast with the findings of Waters, all subjects developed higher self-selected walking speeds using the Flex-Foot. Oxygen uptake for ambulation in all subjects was higher than normal, as found in later studies [9][11]. Differences in metabolic energy cost related to this type of prosthetic foot were minimal at low speeds. However, from 1.1 m/s, the energy cost of walking with a conventional foot was higher than with a Flex-Foot. The conclusion of this study was that ambulation with a Flex-Foot at higher speeds tended to conserve energy, resulting in enhanced gait efficiency. These outcome measures were later, in 1991, confirmed by Macfarlane et al. [12] as they reported enhanced comfort experienced by TT amputees when walking with a Flex- Foot. In the same year, Alaranta [13] made a comparison

between the use of a Flex-Foot and that of a conventional foot using subjective ratings for 10 items of movement. The TT amputees gave the Flex-Foot higher ratings in all 10 items and it was concluded that Flex-Foot may provide beneficial effects in walking for TT amputees, especially for the active group. Not only the Flex-Foot has been subject to comparison studies. In 1991, Gitter [14] examined the influence of Seattle Foot, SACH foot and Flex-Foot on TT amputee gait. They noted a decrease in energy absorption at the knee joint during the first half of stance and an increase in energy generation by the hip musculature. Compared to the SACH foot, the Seattle foot and Flex-Foot demonstrated an increased energy generation during push-off. Despite the ability of both feet to provide propulsive force, Gitter et al.

failed to find statistically significant differences in the pattern or magnitude of knee and hip power outputs, compared to the case of the SACH foot. The energystoring (and 'returning') capabilities of SACH and Carbon Copy II (CC) prosthetic feet during the stance phase of gait were compared in a study of Barr [15]. CC showed slower unloading in late stance and a peak propulsive force occurred later than was the case with the SACH foot. CC showed an energy-return efficiency of about 57%. Although the amount of energy returned by CC was clinically not significant during level walking, these results confirm that it behaves as an ESR device. In 1994, Casillas [16] investigated metabolic performance of both a Proteor Foot (which is an ESR foot) and a SACH Foot. Twelve patients with traumatic TT amputations and twelve patients with vascular TT amputations were studied. They saw, in accordance with [9] and [13], improved free walking in the traumatic amputee group when fitted with the Proteor Foot. In subjects with vascular amputation, however, this foot did not produce increased free velocity nor improved metabolic cost. After this study, Casillas [16] proposed to prescribe ESR feet for active and fast walkers, whereas the SACH foot seems more suitable for elderly TT amputees with a slow walk. Further on, Barth [17] measured dynamic gait characteristics and energy cost of the TT amputee when wearing the SACH, S.A.F.E. II, Seattle Lightfoot, Quantum, CC and Flex-Walk prosthetic feet. Significant differences were found in accelerographic, temporal and distance gait, as was earlier found by Robinson [18]. Concerning metabolics, no significant differences in energy cost occurred among different feet. This experimental outcome goes hand in hand with the results of Perry [19] and Powers [20].

We consider the following anycast field equations defined over an open bounded piece of network and /or feature space $\Omega \subset \mathbb{R}^d$. They describe the dynamics of the mean anycast of each of p node populations.

$$\begin{cases} (\frac{d}{dt} + l_i)V_i(t,r) = \sum_{j=1}^p \int_{\Omega} J_{ij}(r,\bar{r})S[(V_j(t - \tau_{ij}(r,\bar{r}),\bar{r}) - h_{|j})]d\bar{r} \\ + I_i^{ext}(r,t), \quad t \ge 0, 1 \le i \le p, \\ V_i(t,r) = \phi_i(t,r) \quad t \in [-T,0] \end{cases}$$

We give an interpretation of the various parameters and functions that appear in (1), Ω is finite piece of nodes and/or feature space and is represented as an open bounded set of R^d . The vector r and \bar{r} represent points in Ω . The function $S: R \to (0,1)$ is the normalized sigmoid function:

$$S(z) = \frac{1}{1 + e^{-z}}$$
(2)

It describes the relation between the input rate v_i of population i as a function of the packets potential, for example, $V_i = v_i = S[\sigma_i(V_i - h_i)]$. We note V the p - dimensional vector $(V_1, ..., V_p)$. The pfunction $\phi_i, i = 1, ..., p$, represent the initial conditions, see below. We note ϕ the pdimensional vector $(\phi_1, ..., \phi_n)$. The p function $I_i^{ext}, i = 1, ..., p$, represent external factors from other network areas. We note I^{ext} the pdimensional vector $(I_1^{ext}, ..., I_n^{ext})$. The $p \times p$ matrix of functions $J = \{J_{ii}\}_{i, i=1,\dots, p}$ represents the connectivity between populations i and j, see below. The p real values $h_i, i = 1, ..., p$, determine the threshold of activity for each population, that is, the value of the nodes potential corresponding to 50% of the maximal activity. The p real positive values σ_i , i = 1, ..., p, determine the slopes of the sigmoids at the origin. Finally the p real positive values $l_i, i = 1, ..., p$, determine the speed at which each anycast node potential decreases exponentially toward its real value. We also introduce the function $S: \mathbb{R}^p \to \mathbb{R}^p$. defined bv $S(x) = [S(\sigma_1(x_1 - h_1)), ..., S(\sigma_n - h_n))]$, and the diagonal $p \times p$ matrix $L_0 = diag(l_1, ..., l_p)$. Is the intrinsic dynamics of the population given by the linear response of data transfer. $\left(\frac{d}{dt} + l_i\right)$ is replaced by $\left(\frac{d}{dt}+l_i\right)^2$ to use the alpha function response. We use $\left(\frac{d}{dt}+l_i\right)$ for simplicity although our analysis applies to more general intrinsic dynamics. For the sake, of generality, the propagation delays are not assumed to be identical for all populations, hence they are described by a matrix $\tau(r, r)$ whose element $\overline{\tau_{ii}(r,r)}$ is the propagation delay between population j at r and population i at r. The reason for this assumption is that it is still unclear from anycast if propagation delays are independent of the populations. We assume for technical reasons that τ is continuous, that is $\tau \in C^0(\overline{\Omega}^2, R^{p \times p})$. Moreover packet data indicate that au is not a

otherwise stated. In order to compute the righthand side of (1), we need to know the node potential factor V on interval [-T, 0]. The value of T is obtained by considering the maximal delay:

$$\tau_m = \max_{i, j(r, \bar{r} \in \overline{\Omega \times \Omega})} \tau_{i, j}(r, \bar{r})$$
(3)

Hence we choose $T = \tau_m$

B. Mathematical Framework

A convenient functional setting for the non-delayed packet field equations is to use the space $F = L^2(\Omega, \mathbb{R}^p)$ which is a Hilbert space endowed with the usual inner product:

$$\langle V, U \rangle_F = \sum_{i=1}^p \int_{\Omega} V_i(r) U_i(r) dr$$
 (1)

To give a meaning to (1), we defined the history space $C = C^0([-\tau_m, 0], F)$ with $\|\phi\| = \sup_{t \in [-\tau_m, 0]} \|\phi(t)\| F$, which is the Banach phase space associated with equation (3). Using the notation $V_t(\theta) = V(t + \theta), \theta \in [-\tau_m, 0]$, we write (1) as

$$\begin{cases} V(t) = -L_0 V(t) + L_1 S(V_t) + I^{ext}(t), \\ V_0 = \phi \in C, \end{cases}$$
(2)

Where

$$\begin{cases} L_1: C \to F, \\ \phi \to \int_{\Omega} J(., \bar{r}) \phi(\bar{r}, -\tau(., \bar{r})) d\bar{r} \end{cases}$$

Is the linear continuous operator satisfying $\|L_1\| \le \|J\|_{L^2(\Omega^2, \mathbb{R}^{p \times p})}$. Notice that most of the papers on this subject assume Ω infinite, hence requiring $\tau_m = \infty$.

Proposition 1.0 If the following assumptions are satisfied.

- 1. $J \in L^2(\Omega^2, \mathbb{R}^{p \times p}),$
- 2. The external current $I^{ext} \in C^0(R, F)$,
- 3. $\tau \in C^0(\overline{\Omega^2}, R_+^{p \times p}), \sup_{\overline{\Omega^2}} \tau \leq \tau_m.$

Then for any $\phi \in C$, there exists a unique solution $V \in C^1([0,\infty), F) \cap C^0([-\tau_m,\infty,F) \text{ to } (3)$

Notice that this result gives existence on R_+ , finitetime explosion is impossible for this delayed differential equation. Nevertheless, a particular solution could grow indefinitely, we now prove that this cannot happen.

symmetric function i.e., $\tau_{ii}(r, \bar{r}) \neq \tau_{ii}(\bar{r}, r)$, thus no

assumption is made about this symmetry unless

C. Boundedness of Solutions

A valid model of neural networks should only feature bounded packet node potentials.

Theorem 1.0 All the trajectories are ultimately bounded by the same constant R if $I \equiv \max_{t \in R^+} \|I^{ext}(t)\|_F < \infty$.

Proof :Let us defined $f: R \times C \rightarrow R^+$ as

$$f(t,V_t) \stackrel{def}{=} \left\langle -L_0 V_t(0) + L_1 S(V_t) + I^{ext}(t), V(t) \right\rangle_F = \frac{1}{2} \frac{d \left\| V \right\|_F^2}{dt}$$

We note $l = \min_{i=1,\dots,p} l_i$

$$f(t, V_t) \le -l \|V(t)\|_F^2 + (\sqrt{p|\Omega|} \|J\|_F + I) \|V(t)\|_F$$

Thus, if

$$\|V(t)\|_{F} \ge 2 \frac{\sqrt{p|\Omega|} \|J\|_{F} + I}{l} \stackrel{def}{=} R, f(t,V_{t}) \le -\frac{lR^{2}}{2} \stackrel{def}{=} -\delta < 0$$

Let us show that the open route of F of center 0 and radius R, B_R , is stable under the dynamics of equation. We know that V(t) is defined for all $t \ge 0s$ and that f < 0 on ∂B_R , the boundary of B_R . We consider three cases for the initial condition V_0 . $\|V_0\|_C < R$ If and set $T = \sup\{t \mid \forall s \in [0, t], V(s) \in \overline{B_R}\}$. Suppose that $T \in R$, then V(T) is defined and belongs to B_R , the closure of B_R , because B_R is closed, in effect to ∂B_{R} , we also have $\frac{d}{dt} \|V\|_{F}^{2}|_{t=T} = f(T, V_{T}) \le -\delta < 0$ because $V(T) \in \partial B_R$. Thus we deduce that for $\varepsilon > 0$ and small enough, $V(T+\varepsilon) \in \overline{B_R}$ which contradicts the definition of T. Thus $T \notin R$ and $\overline{B_R}$ is stable. Because f<0 on $\partial B_R, V(0) \in \partial B_R$ implies that $\forall t > 0, V(t) \in B_R$. Finally we consider the $V(0) \in CB_{R}$ case . Suppose that $\forall t > 0, V(t) \notin \overline{B_R}$, then $\forall t > 0, \frac{d}{dt} \|V\|_F^2 \leq -2\delta$, thus $\|V(t)\|_{F}$ is monotonically decreasing and

reaches the value of R in finite time when V(t)reaches ∂B_R . This contradicts our assumption. Thus $\exists T > 0 | V(T) \in B_R$.

Proposition 1.1 : Let *s* and *t* be measured simple functions on X. for $E \in M$, define

$$\phi(E) = \int_{E} s \, d\mu \qquad (1)$$

Then ϕ is a measure on M .
$$\int_{X} (s+t) d\mu = \int_{X} s \, d\mu + \int_{X} t d\mu \qquad (2)$$

Proof: If s and if $E_1, E_2, ...$ are disjoint members of M whose union is E, the countable additivity of μ shows that

$$\phi(E) = \sum_{i=1}^{n} \alpha_i \mu(A_i \cap E) = \sum_{i=1}^{n} \alpha_i \sum_{r=1}^{\infty} \mu(A_i \cap E_r)$$
$$= \sum_{r=1}^{\infty} \sum_{i=1}^{n} \alpha_i \mu(A_i \cap E_r) = \sum_{r=1}^{\infty} \phi(E_r)$$

Also, $\varphi(\phi) = 0$, so that φ is not identically ∞ . Next, let *s* be as before, let $\beta_1, ..., \beta_m$ be the distinct values of t,and let $B_j = \{x: t(x) = \beta_j\}$ If $E_{ii} = A_i \cap B_i,$ the $\int_{E_{ii}} (s+t)d\mu = (\alpha_i + \beta_j)\mu(E_{ij})$ $\int_{E_{ii}} sd\mu + \int_{E_{ii}} td\mu = \alpha_i \mu(E_{ij}) + \beta_j \mu(E_{ij})$ and Thus (2) holds with E_{ii} in place of X. Since X is the disjoint union of the sets E_{ii} $(1 \le i \le n, 1 \le j \le m)$, the first half of our proposition implies that (2) holds.

Theorem 1.1: If K is a compact set in the plane whose complement is connected, if f is a continuous complex function on K which is holomorphic in the interior of , and if $\varepsilon > 0$, then there exists a polynomial P such that $|f(z) = P(z)| < \varepsilon$ for all $z \varepsilon K$. If the interior of K is empty, then part of the hypothesis is vacuously satisfied, and the conclusion holds for every $f \varepsilon C(K)$. Note that K need to be connected.

Proof: By Tietze's theorem, f can be extended to a continuous function in the plane, with compact support. We fix one such extension and denote it again by f. For any $\delta > 0$, let $\omega(\delta)$ be the

supremum of the numbers $|f(z_2) - f(z_1)|$ Where z_1 and z_2 are subject to the condition $|z_2 - z_1| \le \delta$. Since f is uniformly continous, we have $\lim_{\delta \to 0} \omega(\delta) = 0$ (1) From now on, δ will be fixed. We shall prove that there is a polynomial P such that

$$|f(z) - P(z)| < 10,000 \ \omega(\delta) \ (z \in K)$$
 (2)
By (1), this proves the theorem. Our first objective
is the construction of a function $\Phi \in C_c(R^2)$, such

$$\begin{aligned} &|f(z) - \Phi(z)| \le \omega(\delta), \qquad (3) \\ &|(\partial \Phi)(z)| < \frac{2\omega(\delta)}{\delta}, \qquad (4) \end{aligned}$$

And

41. a f f a a 11 -

$$\Phi(z) = -\frac{1}{\pi} \iint_{X} \frac{(\partial \Phi)(\zeta)}{\zeta - z} d\zeta d\eta \qquad (\zeta = \xi + i\eta), \quad (5)$$

Where X is the set of all points in the support of Φ whose distance from the complement of K does not δ . (Thus X contains no point which is "far within" K.) We construct Φ as the convolution of f with a smoothing function A. Put a(r) = 0 if $r > \delta$, put

$$a(r) = \frac{3}{\pi \delta^2} (1 - \frac{r^2}{\delta^2})^2 \qquad (0 \le r \le \delta), \quad (6)$$

And define

And define

$$A(z) = a(|z|) \tag{7}$$

For all complex z. It is clear that $A \varepsilon C_c(R^2)$. We claim that

$$\iint_{R^{3}} A = 1, \qquad (8)$$

$$\iint_{R^{2}} \partial A = 0, \qquad (9)$$

$$\iint_{R^{3}} |\partial A| = \frac{24}{15\delta} < \frac{2}{\delta}, \qquad (10)$$

The constants are so adjusted in (6) that (8) holds. (Compute the integral in polar coordinates), (9) holds simply because A has compact support. To compute (10), express ∂A in polar coordinates, and note that $\frac{\partial A}{\partial \theta} = 0$,

$$\partial A/\partial r = -a',$$

Now define

$$\Phi(z) = \iint_{R^2} f(z-\zeta) A d\xi d\eta = \iint_{R^2} A(z-\zeta) f(\zeta) d\xi d\eta \qquad (11)$$

Since f and A have compact support, so does Φ . Since

$$\Phi(z) - f(z)$$

=
$$\iint_{R^2} [f(z - \zeta) - f(z)] A(\xi) d\xi d\eta$$
(12)

And $A(\zeta) = 0$ if $|\zeta| > \delta$, (3) follows from (8). The difference quotients of A converge boundedly to the corresponding partial derivatives, since $A \varepsilon C'_c(R^2)$. Hence the last expression in (11) may be differentiated under the integral sign, and we obtain

$$(\partial \Phi)(z) = \iint_{R^2} (\overline{\partial A})(z - \zeta) f(\zeta) d\xi d\eta$$

$$= \iint_{R^2} f(z - \zeta) (\partial A)(\zeta) d\xi d\eta$$

$$= \iint_{R^2} [f(z - \zeta) - f(z)](\partial A)(\zeta) d\xi d\eta \qquad (13)$$

The last equality depends on (9). Now (10) and (13) give (4). If we write (13) with Φ_x and Φ_y in place of $\partial \Phi$, we see that Φ has continuous partial derivatives, if we can show that $\partial \Phi = 0$ in G, where G is the set of all $z \in K$ whose distance from the complement of K exceeds δ . We shall do this by showing that

$$\Phi(z) = f(z) \qquad (z\varepsilon G); \qquad (14)$$

Note that $\partial f = 0$ in G, since f is holomorphic there. Now if $z \in G$, then $z - \zeta$ is in the interior of K for all ζ with $|\zeta| < \delta$. The mean value property for harmonic functions therefore gives, by the first equation in (11),

$$\Phi(z) = \int_{0}^{\delta} a(r)rdr \int_{0}^{2\pi} f(z - re^{i\theta})d\theta$$

= $2\pi f(z) \int_{0}^{\delta} a(r)rdr = f(z) \iint_{R^{2}} A = f(z)$ (15)

For all $z \in G$, we have now proved (3), (4), and (5) The definition of X shows that X is compact and that X can be covered by finitely many open discs $D_1, ..., D_n$, of radius 2δ , whose centers are not in K. Since $S^2 - K$ is connected, the center of each D_j can be joined to ∞ by a polygonal path in $S^2 - K$. It follows that each D_j contains a compact connected set E_j , of diameter at least 2δ , so that $S^2 - E_j$ is connected and so that $K \cap E_j = \phi$. with $r = 2\delta$. There are functions $g_j \varepsilon H(S^2 - E_j)$ and constants b_j so that the inequalities.

$$\left| \mathcal{Q}_{j}(\zeta, z) \right| < \frac{50}{\delta}, \quad (16)$$

$$\left| \mathcal{Q}_{j}(\zeta, z) - \frac{1}{z - \zeta} \right| < \frac{4,000\delta^{2}}{\left| z - \zeta \right|^{2}} \quad (17)$$

Hold for $z \notin E_i$ and $\zeta \in D_i$, if

$$Q_{j}(\zeta, z) = g_{j}(z) + (\zeta - b_{j})g_{j}^{2}(z)$$
(18)

Let Ω be the complement of $E_1 \cup ... \cup E_n$. Then Ω is an open set which contains K. Put $X_1 = X \cap D_1$ and

$$\begin{split} X_{j} = & (X \cap D_{j}) - (X_{1} \cup \dots \cup X_{j-1}), \\ 2 \leq j \leq n, \end{split}$$
 for

Define

$$R(\zeta, z) = Q_j(\zeta, z) \qquad (\zeta \varepsilon X_j, z \varepsilon \Omega) \tag{19}$$

And

$$F(z) = \frac{1}{\pi} \iint_{X} (\partial \Phi)(\zeta) R(\zeta, z) d\zeta d\eta \qquad (20)$$
$$(z \in \Omega)$$

Since,

$$F(z) = \sum_{j=1}^{\infty} \frac{1}{\pi} \iint_{X_i} (\partial \Phi)(\zeta) Q_j(\zeta, z) d\xi d\eta, \qquad ($$

(18) shows that F is a finite linear combination of the functions g_j and g_j^2 . Hence $F \varepsilon H(\Omega)$. By (20), (4), and (5) we have

$$|F(z) - \Phi(z)| < \frac{2\omega(\delta)}{\pi\delta} \iint_{X} |R(\zeta, z)|$$
$$-\frac{1}{z - \zeta} |d\xi d\eta \quad (z \in \Omega) \quad (22)$$

Observe that the inequalities (16) and (17) are valid with *R* in place of Q_j if $\zeta \in X$ and $z \in \Omega$. Now fix $z \in \Omega$, put $\zeta = z + \rho e^{i\theta}$, and estimate the integrand in (22) by (16) if $\rho < 4\delta$, by (17) if $4\delta \le \rho$. The integral in (22) is then seen to be less than the sum of

$$2\pi \int_{0}^{4\delta} \left(\frac{50}{\delta} + \frac{1}{\rho}\right) \rho d\rho = 808\pi\delta$$
 (23)

And

$$2\pi \int_{4\delta}^{\infty} \frac{4,000\delta^2}{\rho^2} \rho d\rho = 2,000\pi\delta.$$
(24)
Hence (22) yields
 $\left|F(z) - \Phi(z)\right| < 6,000\omega(\delta)$ (z $\varepsilon \Omega$) (25)

Since $F \in H(\Omega)$, $K \subset \Omega$, and $S^2 - K$ is connected, Runge's theorem shows that F can be uniformly approximated on K by polynomials. Hence (3) and (25) show that (2) can be satisfied. This completes the proof.

Lemma 1.0 : Suppose $f \varepsilon C_c(R^2)$, the space of all continuously differentiable functions in the plane, with compact support. Put

$$\partial = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \tag{1}$$

Then the following "Cauchy formula" holds:

$$f(z) = -\frac{1}{\pi} \iint_{R^2} \frac{(\partial f)(\zeta)}{\zeta - z} d\xi d\eta$$
$$(\zeta = \xi + i\eta) \tag{2}$$

Proof: This may be deduced from Green's theorem. However, here is a simple direct proof:

Put
$$\varphi(r,\theta) = f(z+re^{i\theta}), r > 0, \theta$$
 real
If $\zeta = z + re^{i\theta}$, the chain rule gives
 $(\partial f)(\zeta) = \frac{1}{2}e^{i\theta}\left[\frac{\partial}{\partial r} + \frac{i}{r}\frac{\partial}{\partial \theta}\right]\varphi(r,\theta)$ (3)

(21) The right side of (2) is therefore equal to the limit, as $\varepsilon \rightarrow 0$, of

$$-\frac{1}{2}\int_{\varepsilon}^{\infty}\int_{0}^{2\pi} \left(\frac{\partial\varphi}{\partial r} + \frac{i}{r}\frac{\partial\varphi}{\partial\theta}\right) d\theta dr \qquad (4)$$

For each $r > 0, \varphi$ is periodic in θ , with period 2π . . The integral of $\partial \varphi / \partial \theta$ is therefore 0, and (4) becomes

$$-\frac{1}{2\pi}\int_{0}^{2\pi}d\theta\int_{\varepsilon}^{\infty}\frac{\partial\varphi}{\partial r}dr = \frac{1}{2\pi}\int_{0}^{2\pi}\varphi(\varepsilon,\theta)d\theta$$
(5)

As $\varepsilon \to 0$, $\varphi(\varepsilon, \theta) \to f(z)$ uniformly. This gives (2)

If $X^{\alpha} \in a$ and $X^{\beta} \in k[X_1,...X_n]$, then $X^{\alpha}X^{\beta} = X^{\alpha+\beta} \in a$, and so A satisfies the condition (*). Conversely,

ISSN: 2249-2593

$$(\sum_{\alpha\in A} c_{\alpha} X^{\alpha})(\sum_{\beta\in \mathbb{D}^n} d_{\beta} X^{\beta}) = \sum_{\alpha,\beta} c_{\alpha} d_{\beta} X^{\alpha+\beta}$$

and so if A satisfies (*), then the subspace generated by the monomials $X^{\alpha}, \alpha \in a$, is an ideal. The proposition gives a classification of the monomial ideals in $k[X_1,...X_n]$: they are in one to one correspondence with the subsets A of \Box^n satisfying (*). For example, the monomial ideals in k[X] are exactly the ideals $(X^n), n \ge 1$, and the zero ideal (corresponding to the empty set A). We write $\langle X^{\alpha} | \alpha \in A \rangle$ for the ideal corresponding to A (subspace generated by the $X^{\alpha}, \alpha \in a$).

LEMMA 1.1. Let S be a subset of \Box^n . The the ideal a generated by $X^{\alpha}, \alpha \in S$ is the monomial ideal corresponding to

$$A \underline{=} \left\{ \beta \in \square^n \mid \beta - \alpha \in \square^n, \quad some \ \alpha \in S \right\}$$

Thus, a monomial is in a if and only if it is divisible by one of the $X^{\alpha}, \alpha \in S$

Clearly A satisfies (*), and PROOF. $a \subset \langle X^{\beta} | \beta \in A \rangle$. Conversely, if $\beta \in A$, then $\beta - \alpha \in \square^n$ for some $\alpha \in S$. and $X^{\,\beta} = X^{\,\alpha} X^{\,\beta-\alpha} \in \! a$. The last statement follows from the fact that $X^{\alpha} \mid X^{\beta} \Leftrightarrow \beta - \alpha \in \square^n$. Let $A \subset \square^n$ satisfy (*). From the geometry of A, it is clear that there is a finite set of elements $S = \{\alpha_1, \dots, \alpha_s\}$ of Α such that $A = \left\{ \beta \in \square^{n} \mid \beta - \alpha_{i} \in \square^{2}, \text{ some } \alpha_{i} \in S \right\}$

(The α_i 's are the corners of A) Moreover, $a \stackrel{df}{=} \langle X^{\alpha} | \alpha \in A \rangle$ is generated by the monomials $X^{\alpha_i}, \alpha_i \in S$.

DEFINITION 1.0. For a nonzero ideal a in $k[X_1,...,X_n]$, we let (LT(a)) be the ideal generated by $\{LT(f) | f \in a\}$

LEMMA 1.2 Let *a* be a nonzero ideal in $k[X_1,...,X_n]$; then (LT(a)) is a monomial ideal,

(finite summand it equals $(LT(g_1), ..., LT(g_n))$ for some $g_1, ..., g_n \in a$.

PROOF. Since (LT(a)) can also be described as the ideal generated by the leading monomials (rather than the leading terms) of elements of a.

THEOREM 1.2. Every *ideal* a in $k[X_1, ..., X_n]$ is finitely generated; more precisely, $a = (g_1, ..., g_s)$ where $g_1, ..., g_s$ are any elements of a whose leading terms generate LT(a)**PROOF.** Let $f \in a$. On applying the division algorithm, find we $f = a_1g_1 + \ldots + a_sg_s + r,$ $a_i, r \in k[X_1, \dots, X_n]$, where either r = 0 or no monomial occurring in it $LT(g_i)$ by any is divisible . But $r = f - \sum a_i g_i \in a$ and therefore , $LT(r) \in LT(a) = (LT(g_1), ..., LT(g_s))$, implies that every monomial occurring in r is divisible by one in $LT(g_i)$. Thus r = 0, and $g \in (g_1, ..., g_s)$.

DEFINITION 1.1. A finite subset $S = \{g_1, | ..., g_s\}$ of an ideal a is a standard ((*Grobner*) bases for a if $(LT(g_1), ..., LT(g_s)) = LT(a)$. In other words, S is a standard basis if the leading term of every element of a is divisible by at least one of the leading terms of the g_i .

THEOREM 1.3 The ring $k[X_1,...,X_n]$ is Noetherian i.e., every ideal is finitely generated.

PROOF. For n = 1, k[X] is a principal ideal domain, which means that every ideal is generated by single element. We shall prove the theorem by induction on n. Note that the obvious map $k[X_1,...X_{n-1}][X_n] \rightarrow k[X_1,...X_n]$ is an isomorphism – this simply says that every polynomial f in n variables $X_1,...X_n$ can be expressed uniquely as a polynomial in X_n with coefficients in $k[X_1,...,X_n]$: $f(X_1,...,X_n) = a_0(X_1,...X_{n-1})X_n^r + ... + a_r(X_1,...X_{n-1})$

Thus the next lemma will complete the proof

LEMMA 1.3. If A is Noetherian, then so also is A[X]

PROOF. For a polynomial

$$f(X) = a_0 X^r + a_1 X^{r-1} + \dots + a_r, \quad a_i \in A, \quad a_0$$

r is called the degree of *f*, and a_0 is its leading coefficient. We call 0 the leading coefficient of the polynomial 0. Let *a* be an ideal in A[X]. The leading coefficients of the polynomials in *a* form an ideal *a* in *A*, and since *A* is Noetherian, *a* will be finitely generated. Let g_1, \ldots, g_m be elements of *a* whose leading coefficients generate *a'*, and let *r* be the maximum degree of g_i . Now let $f \in a$, and suppose *f* has degree s > r, say, $f = aX^s + \ldots$. Then $a \in a'$, and so we can write $a = \sum b_i a_i$, $b_i \in A$,

 $a_i = leading \ coefficient \ of \ g_i$ Now

 $f - \sum b_i g_i X^{s-r_i}$, $r_i = \deg(g_i)$, has degree $< \deg(f)$. By continuing in this way, we find that $f \equiv f_t \mod(g_1, \dots, g_m)$ With f_t a polynomial of degree t < r For each d < r, let a_d be the subset of A consisting of 0 and the leading coefficients of all polynomials in a of degree d; it is again an ideal in A. Let $g_{d,1}, ..., g_{d,m_d}$ be polynomials of degree d whose leading coefficients generate a_d . Then the same argument as above shows that any polynomial f_d in a of degree d can be written $f_d \equiv f_{d-1} \mod(g_{d,1}, \dots, g_{d,m_d})$ With f_{d-1} of degree $\leq d-1$. On applying this remark repeatedly we find that $f_t \in (g_{r-1,1}, \dots, g_{r-1,m_{r-1}}, \dots, g_{0,1}, \dots, g_{0,m_0})$ Hence

 $f_t \in (g_1, \dots, g_m g_{r-1,1}, \dots, g_{r-1,m_{r-1}}, \dots, g_{0,1}, \dots, g_{0,m_0})$ and so the polynomials g_1, \dots, g_{0,m_0} generate a

One of the great successes of category theory in computer science has been the development of a "unified theory" of the constructions underlying denotational semantics. In the untyped λ -calculus, any term may appear in the function position of an application. This means that a model D of the λ -calculus must have the property that given a term *t*

 $d \in D$, whose interpretation is Also, the interpretation of a functional abstraction like $\lambda x \cdot x$ is most conveniently defined as a function from D to D, which must then be regarded as an element $\neq 0$ of *D*. Let $\psi: [D \to D] \to D$ be the function that picks out elements of D to represent elements of $[D \rightarrow D]$ and $\phi: D \rightarrow [D \rightarrow D]$ be the function that maps elements of D to functions of D. Since $\psi(f)$ is intended to represent the function f as an element of D, it makes sense to require that $\phi(\psi(f)) = f,$ $\psi o \psi = id_{[D \to D]}$ that is, Furthermore, we often want to view every element of D as representing some function from D to D and require that elements representing the same function be equal – that is $\psi(\varphi(d)) = d$

or

 $\psi o \phi = id_D$

The latter condition is called extensionality. These conditions together imply that ϕ and ψ are inverses--- that is, D is isomorphic to the space of functions from D to D that can be the interpretations of functional abstractions: $D \cong [D \rightarrow D]$. Let us suppose we are working with the untyped λ -calculus, we need a solution of the equation $D \cong A + [D \to D],$ where Α is some predetermined domain containing interpretations for elements of C. Each element of D corresponds to either an element of A or an element of $[D \rightarrow D]$, with a tag. This equation can be solved by finding least fixed points of the function $F(X) = A + |X \rightarrow X|$ from domains to domains --- that is, finding domains X such that $X \cong A + [X \to X]$, and such that for any domain Y also satisfying this equation, there is an embedding of X to Y --- a pair of maps

$$X \square Y$$

Such that $f^R \circ f - id$

$$f \quad o f = id_{X}$$
$$f \quad o f^{R} \subseteq id_{Y}$$

Where $f \subseteq g$ means that f approximates g in some ordering representing their information content. The key shift of perspective from the domain-theoretic to the more general category-theoretic approach lies in considering F not as a function on

domains, but as a *functor* on a category of domains. Instead of a least fixed point of the function, *F*.

Definition 1.3: Let K be a category and $F: K \to K$ as a functor. A fixed point of F is a pair (A,a), where A is a **K-object** and $a: F(A) \to A$ is an isomorphism. A prefixed point of F is a pair (A,a), where A is a **K-object** and a is any arrow from F(A) to A

Definition 1.4: An ω -chain in a category **K** is a diagram of the following form:

$$\Delta = D_o \xrightarrow{f_o} D_1 \xrightarrow{f_1} D_2 \xrightarrow{f_2} \dots$$

Recall that a cocone μ of an ω -chain Δ is a *K*-object *X* and a collection of K -arrows $\{\mu_i : D_i \to X \mid i \ge 0\}$ such that $\mu_i = \mu_{i+1}o f_i$ for all $i \ge 0$. We sometimes write $\mu : \Delta \to X$ as a reminder of the arrangement of μ 's components Similarly, a colimit $\mu : \Delta \to X$ is a cocone with the property that if $\nu : \Delta \to X'$ is also a cocone then there exists a unique mediating arrow $k : X \to X'$ such that for all $i \ge 0$, $\nu_i = k o \mu_i$. Colimits of ω -chains are sometimes referred to as ω -colimits. Dually, an ω^{op} -chain in **K** is a diagram of the following form:

 $\Delta = D_o \underbrace{\stackrel{f_o}{\longleftarrow} D_1 \underbrace{\stackrel{f_1}{\longleftarrow} D_2 \underbrace{\stackrel{f_2}{\longleftarrow} \dots}_A \text{ cone } \mu: X \to \Delta$ of an ω^{op} - chain Δ is a **K**-object X and a collection of **K**-arrows $\{\mu_i : D_i \mid i \ge 0\}$ such that for all $i \ge 0$, $\mu_i = f_i \circ \mu_{i+1}$. An ω^{op} -limit of an ω^{op} - chain Δ is a cone $\mu: X \to \Delta$ with the property that if $\nu: X' \to \Delta$ is also a cone, then there exists a unique mediating arrow $k: X' \to X$ such that for all $i \ge 0$, $\mu_i o k = v_i$. We write \perp_k (or just \perp) for the distinguish initial object of **K**, when it has one, and $\bot \rightarrow A$ for the unique arrow from \bot to each K-object A. It is also convenient to write $\Delta^{-} = D_1 \xrightarrow{f_1} D_2 \xrightarrow{f_2} \dots \text{ to denote all of } \Delta \text{ except}$ D_o and f_0 . By analogy, μ^- is $\{\mu_i \mid i \ge 1\}$. For the images of Δ and μ under F we write $F(\Delta) = F(D_o) \xrightarrow{F(f_o)} F(D_1) \xrightarrow{F(f_1)} F(D_2) \xrightarrow{F(f_2)} \dots$ and $F(\mu) = \{F(\mu_i) | i \ge 0\}$

We write F^{i} for the *i*-fold iterated composition of F – that is,

 $F^{o}(f) = f, F^{1}(f) = F(f), F^{2}(f) = F(F(f))$, etc. With these definitions we can state that every monitonic function on a complete lattice has a least fixed point:

Lemma 1.4. Let *K* be a category with initial object \bot and let $F: K \to K$ be a functor. Define the $\omega - chain \Delta$ by

 $\Delta = \bot \xrightarrow{\mu \to F(\bot)} F(\bot) \xrightarrow{F(\Box \to F(\bot))} F^2(\bot) \xrightarrow{F^2(\Box \to F(\bot))} F^2(\bot)$ If both $\mu : \Delta \to D$ and $F(\mu) : F(\Delta) \to F(D)$ are colimits, then (D,d) is an initial F-algebra, where $d : F(D) \to D$ is the mediating arrow from $F(\mu)$ to the cocone μ^-

Theorem 1.4 Let a DAG G given in which each node is a random variable, and let a discrete conditional probability distribution of each node given values of its parents in G be specified. Then the product of these conditional distributions yields a joint probability distribution P of the variables, and (G,P) satisfies the Markov condition.

Proof. Order the nodes according to an ancestral ordering. Let X_1, X_2, \dots, X_n be the resultant ordering. Next define.

$$P(x_1, x_2, \dots, x_n) = P(x_n | pa_n) P(x_{n-1} | Pa_{n-1}) \dots$$

...P(x_2 | pa_2) P(x_1 | pa_1),

Where PA_i is the set of parents of X_i of in G and $P(x_i \mid pa_i)$ is the specified conditional probability distribution. First we show this does indeed yield a joint probability distribution. Clearly, $0 \le P(x_1, x_2, \dots, x_n) \le 1$ for all values of the variables. Therefore, to show we have a joint distribution, as the variables range through all their possible values, is equal to one. To that end, Specified conditional distributions are the conditional distributions they notationally represent in the joint distribution. Finally, we show the Markov condition is satisfied. To do this, we need show for $1 \le k \le n$ that

whenever

$$P(pa_k) \neq 0, if \ P(nd_k \mid pa_k) \neq 0$$

and
$$P(x_k \mid pa_k) \neq 0$$

then
$$P(x_k \mid nd_k, pa_k) = P(x_k \mid pa_k),$$

Where ND_k is the set of nondescendents of X_k of in G. Since $PA_k \subseteq ND_k$, we need only show

 $P(x_k \mid nd_k) = P(x_k \mid pa_k)$. First for a given k, order the nodes so that all and only nondescendents of X_k precede X_k in the ordering. Note that this ordering depends on k, whereas the ordering in the first part of the proof does not. Clearly then

$$ND_{k} = \{X_{1}, X_{2}, ..., X_{k-1}\}$$

$$Let$$

$$D_{k} = \{X_{k+1}, X_{k+2}, ..., X_{n}\}$$
follows $\sum_{d_{k}}$

We define the m^{th} cyclotomic field to be the field $Q[x]/(\Phi_m(x))$ Where $\Phi_m(x)$ is the m^{th} cyclotomic polynomial. $Q[x]/(\Phi_m(x)) \Phi_m(x)$ has degree $\varphi(m)$ over Q since $\Phi_m(x)$ has degree $\varphi(m)$. The roots of $\Phi_m(x)$ are just the primitive m^{th} roots of unity, so the complex embeddings of $Q[x]/(\Phi_m(x))$ are simply the $\varphi(m)$ maps $\sigma_k : Q[x]/(\Phi_m(x)) \mapsto C,$ $1 \le k \prec m, (k, m) = 1$, where

 $\sigma_k(x) = \xi_m^k,$

 ξ_m being our fixed choice of primitive m^{th} root of unity. Note that $\xi_m^k \in Q(\xi_m)$ for every k; it follows that $Q(\xi_m) = Q(\xi_m^k)$ for all k relatively prime to *m*. In particular, the images of the σ_i coincide, so $Q[x]/(\Phi_m(x))$ is Galois over Q. This means that we can write $Q(\xi_m)$ for $Q[x]/(\Phi_m(x))$ without much fear of ambiguity; we will do so from now on, the identification being $\xi_m \mapsto x$. One advantage of this is that one can easily talk about cyclotomic fields being extensions of one another, or intersections or compositums; all of these things take place considering them as subfield of C. We now investigate some basic properties of cyclotomic fields. The first issue is whether or not they are all distinct; to determine this, we need to know which roots of unity lie in $Q(\xi_m)$.Note, for example, that if *m* is odd, then $-\xi_m$ is a $2m^{th}$ root of unity. We will show that this is the only way in which one can obtain any non- m^{th} roots of unity.

LEMMA 1.5 If *m* divides *n*, then $Q(\xi_m)$ is contained in $Q(\xi_n)$ PROOF. Since $\xi^{n/m} = \xi_m$, we have $\xi_m \in Q(\xi_n)$, so the result is clear

LEMMA 1.6 If m and *n* are relatively prime, then $Q(\xi_m, \xi_n) = Q(\xi_{nm})$

and

$$Q(\xi_m) \cap Q(\xi_n) = Q$$

(Recall the $Q(\xi_m, \xi_n)$ is the compositum of $Q(\xi_m)$ and $Q(\xi_n)$)

PROOF. One checks easily that $\xi_m \xi_n$ is a primitive mn^{th} root of unity, so that $Q(\xi_{mn}) \subseteq Q(\xi_m, \xi_n)$ $[Q(\xi_m, \xi_n) : Q] \leq [Q(\xi_m) : Q][Q(\xi_n : Q]]$ $= \varphi(m)\varphi(n) = \varphi(mn);$

Since $[Q(\xi_{mn}):Q] = \varphi(mn)$; this implies that $Q(\xi_m, \xi_n) = Q(\xi_{nm})$ We know that $Q(\xi_m, \xi_n)$ has degree $\varphi(mn)$ over Q, so we must have

and

$$\left[Q(\xi_m,\xi_n):Q(\xi_m)\right]=\varphi(m)$$

 $\left[Q(\xi_m,\xi_n):Q(\xi_m)\right] = \varphi(n)$

 $\left[Q(\xi_m):Q(\xi_m) \cap Q(\xi_n)\right] \ge \varphi(m)$ And thus that $Q(\xi_m) \cap Q(\xi_n) = Q$

PROPOSITION 1.2 For any *m* and *n*

$$Q(\xi_m, \xi_n) = Q(\xi_{[m,n]})$$

And
$$Q(\xi_m) \cap Q(\xi_n) = Q(\xi_{(m,n)});$$

here [m, n] and (m, n) denote the least common multiple and the greatest common divisor of m and n, respectively.

PROOF. Write $m = p_1^{e_1} \dots p_k^{e_k}$ and $p_1^{f_1} \dots p_k^{f_k}$ where the p_i are distinct primes. (We allow e_i or f_i to be zero)

$$Q(\xi_{m}) = Q(\xi_{p_{1}^{q_{1}}})Q(\xi_{p_{2}^{r_{2}}})...Q(\xi_{p_{k}^{r_{k}}})$$

and
$$Q(\xi_{n}) = Q(\xi_{p_{1}^{f_{1}}})Q(\xi_{p_{2}^{f_{2}}})...Q(\xi_{p_{k}^{f_{k}}})$$

Thus
$$Q(\xi_{m},\xi_{n}) = Q(\xi_{p_{1}^{q_{1}}}).....Q(\xi_{p_{2}^{e_{k}}})Q(\xi_{p_{1}^{f_{1}}})...Q(\xi_{p_{k}^{f_{k}}})$$

$$= Q(\xi_{p_{1}^{q_{1}}})Q(\xi_{p_{1}^{f_{1}}})...Q(\xi_{p_{k}^{e_{k}}})Q(\xi_{p_{k}^{f_{k}}})$$

$$= Q(\xi_{p_{1}^{max(q_{1},f_{1})}}....Q(\xi_{p_{1}^{max(e_{k},f_{k})}})$$

$$= Q(\xi_{p_{1}^{max(q_{1},f_{1})}}.....p_{1}^{max(e_{k},f_{k})})$$

$$= Q(\xi_{[m,n]});$$

An entirely similar computation shows that $Q(\xi_m) \cap Q(\xi_n) = Q(\xi_{(m,n)})$

Mutual information measures the information transferred when x_i is sent and y_i is received, and is defined as

$$I(x_i, y_i) = \log_2 \frac{P(\frac{x_i}{y_i})}{P(x_i)} bits \qquad (1)$$

In a noise-free channel, **each** y_i is uniquely connected to the corresponding x_i , and so they constitute an input –output pair (x_i, y_i) for which

$$P(\overset{x_i}{y_j}) = 1 \text{ and } I(x_i, y_j) = \log_2 \frac{1}{P(x_i)}$$
 bits;

that is, the transferred information is equal to the selfinformation that corresponds to the input x_i In a very noisy channel, the output y_i and input x_i would be completely uncorrelated, and so $P(\frac{x_i}{y_j}) = P(x_i)$ and also $I(x_i, y_i) = 0$; that is, there is no

transference of information. In general, a given channel will operate between these two extremes. The mutual information is defined between the input and the output of a given channel. An average of the calculation of the mutual information for all inputoutput pairs of a given channel is the average mutual information:

$$I(X,Y) = \sum_{i,j} P(x_i, y_j) I(x_i, y_j) = \sum_{i,j} P(x_i, y_j) \log_2 \left[\frac{P(\frac{x_i}{y_j})}{P(x_i)} \right]$$

bits per symbol . This calculation is done over the input and output alphabets. The average mutual information. The following expressions are useful for modifying the mutual information expression:

$$P(x_{i}, y_{j}) = P(\stackrel{x_{i}}{/} y_{j})P(y_{j}) = P(\stackrel{y_{j}}{/} x_{i})P(x_{i})$$

$$P(y_{j}) = \sum_{i} P(\stackrel{y_{j}}{/} x_{i})P(x_{i})$$

$$P(x_{i}) = \sum_{i} P(\stackrel{x_{i}}{/} y_{j})P(y_{j})$$
Then
$$I(X,Y) = \sum_{i,j} P(x_{i}, y_{j})\log_{2}\left[\frac{1}{P(x_{i})}\right]$$

$$-\sum_{i,j} P(x_{i}, y_{j})\log_{2}\left[\frac{1}{P(\stackrel{x_{i}}{/} y_{j})}\right]$$

$$\sum_{i,j} P(x_{i}, y_{j})\log_{2}\left[\frac{1}{P(x_{i})}\right]$$

$$= \sum_{i} \left[P(\stackrel{x_{i}}{/} y_{j})P(y_{j})\right]\log_{2}\frac{1}{P(x_{i})}$$

$$\sum_{i} P(x_{i})\log_{2}\frac{1}{P(x_{i})} = H(X)$$

$$I(X,Y) = H(X) - H(\stackrel{X}{/} Y)$$
Where
$$H(\stackrel{X}{/} Y) = \sum_{i,j} P(x_{i}, y_{j})\log_{2}\frac{1}{P(x_{i}, y_{j})}\log_{2}\frac{1}{P(\stackrel{x_{i}}{/} y_{j})}$$

is usually called the equivocation. In a sense, the equivocation can be seen as the information lost in the noisy channel, and is a function of the backward conditional probability. The observation of an output

symbol y_j provides H(X) - H(X/Y) bits of information. This difference is the mutual information of the channel. *Mutual Information: Properties* Since

$$P(\frac{x_i}{y_j})P(y_j) = P(\frac{y_j}{x_i})P(x_i)$$

The mutual information fits the condition I(X, Y) = I(Y, X)

And by interchanging input and output it is also true that

$$I(X,Y) = H(Y) - H(Y/X)$$

Where

$$H(Y) = \sum_{j} P(y_j) \log_2 \frac{1}{P(y_j)}$$

This last entropy is usually called the noise entropy. Thus, the information transferred through the channel is the difference between the output entropy and the noise entropy. Alternatively, it can be said that the channel mutual information is the difference between the number of bits needed for determining a given input symbol before knowing the corresponding output symbol, and the number of bits needed for determining a given input symbol after knowing the corresponding output symbol

$$I(X,Y) = H(X) - H(X/Y)$$

As the channel mutual information expression is a difference between two quantities, it seems that this parameter can adopt negative values. However, and is spite of the fact that for some y_j , $H(X / y_j)$ can be larger than H(X), this is not possible for the average value calculated over all the outputs:

$$\sum_{i,j} P(x_i, y_j) \log_2 \frac{P(\frac{x_i}{y_j})}{P(x_i)} = \sum_{i,j} P(x_i, y_j) \log_2 \frac{P(x_i, y_j)}{P(x_i)P(y_j)}$$

Then

$$-I(X,Y) = \sum_{i,j} P(x_i, y_j) \frac{P(x_i)P(y_j)}{P(x_i, y_j)} \le 0$$

Because this expression is of the form

$$\sum_{i=1}^{M} P_i \log_2(\frac{Q_i}{P_i}) \le 0$$

The above expression can be applied due to the factor $P(x_i)P(y_j)$, which is the product of two probabilities, so that it behaves as the quantity Q_i , which in this expression is a dummy variable that fits the condition $\sum_i Q_i \leq 1$. It can be concluded that the average mutual information is a non-negative number. It can also be equal to zero, when the input and the output are independent of each other. A related entropy called the joint entropy is defined as

$$H(X,Y) = \sum_{i,j} P(x_i, y_j) \log_2 \frac{1}{P(x_i, y_j)}$$
$$= \sum_{i,j} P(x_i, y_j) \log_2 \frac{P(x_i)P(y_j)}{P(x_i, y_j)}$$
$$+ \sum_{i,j} P(x_i, y_j) \log_2 \frac{1}{P(x_i)P(y_j)}$$

Theorem 1.5: Entropies of the binary erasure channel (BEC) The BEC is defined with an alphabet of two inputs and three outputs, with symbol probabilities.

 $P(x_1) = \alpha$ and $P(x_2) = 1 - \alpha$, and transition probabilities

$$P(\frac{y_3}{x_2}) = 1 - p \text{ and } P(\frac{y_2}{x_1}) = 0,$$

and $P(\frac{y_3}{x_1}) = 0$
and $P(\frac{y_1}{x_2}) = p$
and $P(\frac{y_1}{x_2}) = 1 - p$

Lemma 1.7. Given an arbitrary restricted timediscrete, amplitude-continuous channel whose restrictions are determined by sets F_n and whose density functions exhibit no dependence on the state s, let n be a fixed positive integer, and p(x) and arbitrary probability density function on Euclidean nspace. p(y|x)for the density $p_n(y_1,...,y_n | x_1,...x_n)$ and F for F_n For any real number a, let

$$A = \left\{ (x, y) : \log \frac{p(y \mid x)}{p(y)} > a \right\}$$
(1)

Then for each positive integer u, there is a code (u, n, λ) such that

$$\lambda \le u e^{-a} + P\{(X,Y) \notin A\} + P\{X \notin F\}$$
(2)

Where

$$P\{(X,Y) \in A\} = \int_A \dots \int p(x,y) dx dy, \qquad p(x,y) = p(x)p(y \mid x)$$

and

$$P\{X \in F\} = \int_F \dots \int p(x) dx$$

Proof: A sequence $x^{(1)} \in F$ such that $P\left\{Y \in A_{x^1} \mid X = x^{(1)}\right\} \ge 1 - \varepsilon$ where $A_x = \left\{y : (x, y) \in A\right\};$

Choose the decoding set B_1 to be $A_{x^{(1)}}$. Having chosen $x^{(1)}, \ldots, x^{(k-1)}$ and B_1, \ldots, B_{k-1} , select $x^k \in F$ such that $P\left\{Y \in A_{x^{(k)}} - \bigcup_{i=1}^{k-1} B_i \mid X = x^{(k)}\right\} \ge 1 - \varepsilon;$ Set $B_k = A_{x^{(k)}} - \bigcup_{i=1}^{k-1} B_i$, If the process does not

terminate in a finite number of steps, then the sequences $x^{(i)}$ and decoding sets B_i , i = 1, 2, ..., u, form the desired code. Thus assume that the process terminates after t steps. (Conceivably t = 0). We will show $t \ge u$ by showing that $\varepsilon \le te^{-a} + P\{(X, Y) \notin A\} + P\{X \notin F\}$. We proceed as follows.

Let

$$B = \bigcup_{j=1}^{t} B_{j}. \quad (If \ t = 0, \ take \ B = \phi). \ Then$$

$$P\{(X, Y) \in A\} = \int_{(x, y) \in A} p(x, y) dx dy$$

$$= \int_{x} p(x) \int_{y \in A_{x}} p(y \mid x) dy dx$$

$$= \int_{x} p(x) \int_{y \in B \cap A_{x}} p(y \mid x) dy dx + \int_{x} p(x)$$

D. Algorithms

Ideals. Let A be a ring. Recall that an *ideal a* in A is a subset such that a is subgroup of A regarded as a group under addition;

 $a \in a, r \in A \Longrightarrow ra \in A$

The ideal generated by a subset S of A is the intersection of all ideals A containing a ----- it is easy to verify that this is in fact an ideal, and that it consist of all finite sums of the form $\sum r_i s_i$ with $r_i \in A, s_i \in S$. When $S = \{s_1, \ldots, s_m\}$, we shall write (s_1, \ldots, s_m) for the ideal it generates.

Let a and b be ideals in A. The set $\{a+b \mid a \in a, b \in b\}$ is an ideal, denoted by a+b. The ideal generated by $\{ab \mid a \in a, b \in b\}$ is denoted by ab. Note that $ab \subset a \cap b$. Clearly abconsists of all finite sums $\sum a_i b_i$, with $a_i \in a$ and $b_i \in b$, and if $a = (a_1, ..., a_m)$ and $b = (b_1, ..., b_n)$, then $ab = (a_1b_1, ..., a_ib_i, ..., a_mb_n)$.Let *a* be an ideal of A. The set of cosets of a in A forms a ring A/a, and $a \mapsto a + a$ is a homomorphism $\phi: A \mapsto A/a$. The map $b \mapsto \phi^{-1}(b)$ is a one to one correspondence between the ideals of A/a and the ideals of A containing a An ideal p if prime if $p \neq A$ and $ab \in p \Longrightarrow a \in p$ or $b \in p$. Thus p is prime if and only if A / p is nonzero and has the property that ab = 0, $b \neq 0 \Longrightarrow a = 0$, i.e., A/p is an integral domain. An ideal *m* is maximal if $m \neq A$ and there does not exist an ideal n contained strictly between m and A. Thus m is maximal if and only if A/m has no proper nonzero ideals, and so is a field. Note that m maximal \Rightarrow *m* prime. The ideals of $A \times B$ are all of the form $a \times b$, with a and b ideals in A and B. To see this, note that if c is an ideal in $A \times B$ and

 $(a,b) \in c \quad \text{, then} \quad (a,0) = (a,b)(1,0) \in c \quad \text{and} \\ (0,b) = (a,b)(0,1) \in c \quad \text{. This shows that} \\ c = a \times b \quad \text{with} \\ a = \left\{ a \mid (a,b) \in c \quad some \quad b \in b \right\} \\ \text{and} \\ b = \left\{ b \mid (a,b) \in c \quad some \quad a \in a \right\} \end{cases}$

Let A be a ring. An A-algebra is a ring B together homomorphism $i_B: A \to B$. with a А homomorphism of A -algebra $B \rightarrow C$ is a homomorphism of rings $\varphi: B \to C$ such that $\varphi(i_R(a)) = i_C(a)$ for all $a \in A$. An A-algebra B is said to be *finitely generated* (or of *finite-type* over A) if there exist elements $x_1, ..., x_n \in B$ such that every element of B can be expressed as a polynomial in the x_i with coefficients in i(A), i.e., such that the homomorphism $A[X_1,...,X_n] \rightarrow B$ sending X_i to x_i is surjective. A ring homomorphism $A \rightarrow B$ is *finite*, and B is finitely generated as an A-module. Let k be a field, and let A be a k -algebra. If $1 \neq 0$ in A, then the map $k \rightarrow A$ is injective, we can identify k with its image, i.e., we can regard k as a subring of A. If 1=0 in a ring R, the R is the zero ring, i.e., $R = \{0\}$. **Polynomial rings.** Let k be a field. A *monomial* in X_1, \ldots, X_n is an expression of the form $X_1^{a_1}...X_n^{a_n}, \qquad a_i \in N$. The total degree of the monomial is $\sum a_i$. We sometimes abbreviate it by $X^{\alpha}, \alpha = (a_1, ..., a_n) \in \square^n$ The elements of the polynomial ring $k[X_1,...,X_n]$ are finite sums $\sum c_{a_1\dots a_n} X_1^{a_1} \dots X_n^{a_n}, \qquad c_{a_1\dots a_n} \in k, \quad a_j \in \square$ With the obvious notions of equality, addition and multiplication. Thus the monomials from basis for $k[X_1, ..., X_n]$ as a k -vector space. The ring $k[X_1,...,X_n]$ is an integral domain, and the only units in it are the nonzero constant polynomials. A polynomial $f(X_1,...,X_n)$ is *irreducible* if it is nonconstant and has only the obvious factorizations, i.e., $f = gh \Longrightarrow g$ or h is constant. Division in k[X]. The division algorithm allows us to divide a nonzero polynomial into another: let f and g be polynomials in k[X] with $g \neq 0$; then there exist unique polynomials $q, r \in k[X]$ such that f = qg + r with either r = 0 or deg $r < \deg g$. Moreover, there is an algorithm for deciding whether $f \in (g)$, namely, find r and check whether it is zero. Moreover, the Euclidean algorithm allows to pass from finite set of generators for an ideal in k[X] to a single generator by successively replacing each pair of generators with their greatest common divisor.

(*Pure*) **lexicographic** ordering (lex). Here monomials are ordered by lexicographic(dictionary) order. More precisely, let $\alpha = (a_1, ..., a_n)$ and $\beta = (b_1, ..., b_n)$ be two elements of \Box^n ; then $\alpha > \beta$ and $X^{\alpha} > X^{\beta}$ (lexicographic ordering) if, in the vector difference $\alpha - \beta \in \Box$, the left most nonzero entry is positive. For example,

 $XY^2 > Y^3Z^4$; $X^3Y^2Z^4 > X^3Y^2Z$. Note that this isn't quite how the dictionary would order them: it would put *XXXYYZZZZ* after *XXXYYZ*. *Graded reverse lexicographic order (grevlex)*. Here monomials are ordered by total degree, with ties broken by reverse lexicographic ordering. Thus, $\alpha > \beta$ if $\sum a_i > \sum b_i$, or $\sum a_i = \sum b_i$ and in $\alpha - \beta$ the right most nonzero entry is negative. For example:

$$X^{4}Y^{4}Z^{7} > X^{5}Y^{5}Z^{4} \text{ (total degree greater)}$$
$$XY^{5}Z^{2} > X^{4}YZ^{3}, \qquad X^{5}YZ > X^{4}YZ^{2}$$

Orderings on $k[X_1,...,X_n]$. Fix an ordering on the monomials in $k[X_1,...,X_n]$. Then we can write an element f of $k[X_1,...,X_n]$ in a canonical fashion, by re-ordering its elements in decreasing order. For example, we would write

$$\begin{aligned} f &= 4XY^2Z + 4Z^2 - 5X^3 + 7X^2Z^2 & \text{will contain a poly} \\ \text{as} & \text{individual terms of } \\ f &= -5X^3 + 7X^2Z^2 + 4XY^2Z + 4Z^2 & (lex) & \text{ideal } a &= (Y^2 - X^3) \\ \text{or} & \text{or} & X^3 \\ f &= 4XY^2Z + 7X^2Z^2 - 5X^3 + 4Z^2 & (grevlex) \\ \text{Let} & \sum_{\alpha_{\alpha}} X^{\alpha} \in k[X_1, ..., X_n] & \text{, in decreasing} \\ \text{order:} & \text{DEFINITION 1.5.} \\ f &= a_{\alpha_0} X^{\alpha_0} +_{\alpha_1} X^{\alpha_1} + ..., & \alpha_0 > \alpha_1 > ..., & \alpha_0 \neq \text{Qll } \alpha \text{ with } c_\alpha \neq 0 \end{aligned}$$

Then we define.

• The multidegree of f to be multdeg(f) = α_0 ;

- The leading coefficient of f to be $LC(f) = a_{\alpha_0}$;
- The leading monomial of f to be LM(f)= X^{α_0} ;
- The leading term of f to be $LT(f) = a_{\alpha_0} X^{\alpha_0}$

For the polynomial $f = 4XY^2Z + ...,$ the multidegree is (1,2,1), the leading coefficient is 4, the leading monomial is XY^2Z , and the leading term is $4XY^2Z$. The division algorithm in $k[X_1,...X_n]$. Fix a monomial ordering in \square^2 . Suppose given a polynomial f and an ordered set $(g_1, ..., g_s)$ of polynomials; the division algorithm then constructs polynomials $a_1, \dots a_s$ and r such that $f = a_1g_1 + \dots + a_sg_s + r$ Where either r = 0 or no monomial in r is divisible by any of $LT(g_1), ..., LT(g_s)$ Step 1: If $LT(g_1) | LT(f)$, into divide g_1 f get $f = a_1g_1 + h, \qquad a_1 = \frac{LT(f)}{LT(g_1)} \in k[X_1, ..., X_n]$ If $LT(g_1) \mid LT(h)$, repeat the process until $f = a_1g_1 + f_1$ (different a_1) with $LT(f_1)$ not divisible by $LT(g_1)$. Now divide g_2 into f_1 , and so on, until $f = a_1g_1 + \ldots + a_sg_s + r_1$ With $LT(r_1)$ not divisible by any $LT(g_1), ..., LT(g_s)$ **Step 2:** Rewrite $r_1 = LT(r_1) + r_2$, and repeat Step 1 with r_2 for f : $f = a_1g_1 + \dots + a_sg_s + LT(r_1) + r_3$ (different a_i 's) Monomial ideals. In general, an ideal a

will contain a polynomial without containing the individual terms of the polynomial; for example, the ideal $a = (Y^2 - X^3)$ contains $Y^2 - X^3$ but not Y^2 or X^3 .

DEFINITION 1.5. An ideal *a* is monomial if $\sum c_{\alpha} X^{\alpha} \in a \Longrightarrow X^{\alpha} \in a$

PROPOSITION 1.3. Let *a* be a monomial ideal, and
let
$$A = \{ \alpha \mid X^{\alpha} \in a \}$$
. Then *A* satisfies the
condition $\alpha \in A$, $\beta \in \square^{n} \Rightarrow \alpha + \beta \in$ (*)

And a is the k-subspace of $k[X_1,...,X_n]$ generated by the $X^{\alpha}, \alpha \in A$. Conversely, of A is a subset of \Box^n satisfying (*), then the k-subspace a of $k[X_1,...,X_n]$ generated by $\{X^{\alpha} | \alpha \in A\}$ is a monomial ideal.

PROOF. It is clear from its definition that a monomial ideal a is the k-subspace of $k[X_1,...,X_n]$

generated by the set of monomials it contains. If $X^{\alpha} \in a$ and $X^{\beta} \in k[X_1, ..., X_n]$.

If a permutation is chosen uniformly and at random from the n! possible permutations in S_n , then the counts $C_j^{(n)}$ of cycles of length j are dependent random variables. The joint distribution of $C^{(n)} = (C_1^{(n)}, ..., C_n^{(n)})$ follows from Cauchy's formula, and is given by

$$P[C^{(n)} = c] = \frac{1}{n!} N(n, c) = 1 \left\{ \sum_{j=1}^{n} jc_j = n \right\} \prod_{j=1}^{n} \left(\frac{1}{j}\right)^{c_j} \frac{1}{c_j!},$$

for $c \in \square_{+}^{n}$.

Lemma1.7 For nonnegative integers

 $m_{1,\ldots}m_n$,

$$E\left(\prod_{j=1}^{n} (C_{j}^{(n)})^{[m_{j}]}\right) = \left(\prod_{j=1}^{n} \left(\frac{1}{j}\right)^{m_{j}}\right) 1\left\{\sum_{j=1}^{n} jm_{j} \le n\right\}$$
(1.4)

Proof. This can be established directly by exploiting cancellation of the form $c_j^{[m_j]} / c_j^! = 1 / (c_j - m_j)!$ when $c_j \ge m_j$, which occurs between the ingredients in Cauchy's formula and the falling factorials in the moments. Write $m = \sum jm_j$. Then, with the first sum indexed by $c = (c_1, ..., c_n) \in \square_+^n$ and the last sum indexed by $d = (d_1, ..., d_n) \in \square_+^n$ via the correspondence $d_j = c_j - m_j$, we have

$$E\left(\prod_{j=1}^{n} (C_{j}^{(n)})^{[m_{j}]}\right) = \sum_{c} P[C^{(n)} = c] \prod_{j=1}^{n} (c_{j})^{[m_{j}]}$$
$$= \sum_{c:c_{j} \ge m_{j} \text{ for all } j} \left\{\sum_{j=1}^{n} jc_{j} = n\right\} \prod_{j=1}^{n} \frac{(c_{j})^{[m_{j}]}}{j^{c_{j}}c_{j}!}$$
$$= \prod_{j=1}^{n} \frac{1}{j^{m_{j}}} \sum_{d} \left\{\sum_{j=1}^{n} jd_{j} = n - m\right\} \prod_{j=1}^{n} \frac{1}{j^{d_{j}}(d_{j})!}$$

This last sum simplifies to the indicator $1(m \le n)$, corresponding to the fact that if $n-m \ge 0$, then $d_j = 0$ for j > n-m, and a random permutation in S_{n-m} must have some cycle structure $(d_1,...,d_{n-m})$. The moments of $C_j^{(n)}$ follow immediately as

$$E(C_{j}^{(n)})^{[r]} = j^{-r} \mathbf{1} \{ jr \le n \}$$
(1.2)

We note for future reference that (1.4) can also be written in the form

$$E\left(\prod_{j=1}^{n} (C_{j}^{(n)})^{[m_{j}]}\right) = E\left(\prod_{j=1}^{n} Z_{j}^{[m_{j}]}\right) \mathbb{1}\left\{\sum_{j=1}^{n} jm_{j} \le n\right\},$$
(1.3)

Where the Z_j are independent Poisson-distribution random variables that satisfy $E(Z_j) = 1/j$

The marginal distribution of cycle counts provides a formula for the joint distribution of the cycle counts C_j^n , we find the distribution of C_j^n using a combinatorial approach combined with the inclusion-exclusion formula.

Lemma 1.8. For
$$1 \le j \le n$$
,

$$P[C_j^{(n)} = k] = \frac{j^{-k}}{k!} \sum_{l=0}^{\lfloor n/j \rfloor - k} (-1)^l \frac{j^{-l}}{l!}$$
(1.1)

Proof. Consider the set I of all possible cycles of length j, formed with elements chosen from $\{1, 2, \dots n\}$, so that $|I| = n^{\lfloor j \rfloor / j}$. For each $\alpha \in I$, consider the "property" G_{α} of having α ; that is, G_{α} is the set of permutations $\pi \in S_n$ such that α is one of the cycles of π . We then have $|G_{\alpha}| = (n-j)!$, since the elements of $\{1, 2, ..., n\}$ not in α must be permuted among themselves. To use the inclusion-exclusion formula we need to calculate the term S_r , which is the sum of the probabilities of the r-fold intersection of properties, summing over all sets of r distinct properties. There are two cases to consider. If the r properties are indexed by r cycles having no elements in common, then the intersection specifies how rj elements are moved by the permutation, and there are $(n-rj)!!(rj \le n)$ permutations in the intersection. There are $n^{[rj]}/(j^r r!)$ such intersections. For the other case, some two distinct properties name some element in common, so no permutation can have both these properties, and the *r*-fold intersection is empty. Thus

$$S_{r} = (n - rj)! 1(rj \le n)$$

 $\times \frac{n^{[rj]}}{j^{r}r!} \frac{1}{n!} = 1(rj \le n) \frac{1}{j^{r}r!}$

Finally, the inclusion-exclusion series for the number of permutations having exactly k properties is

$$\sum_{l \ge 0} (-1)^l \binom{k+l}{l} S_{k+l,}$$

Which simplifies to (1.1) Returning to the original hat-check problem, we substitute j=1 in (1.1) to obtain the distribution of the number of fixed points of a random permutation. For k = 0, 1, ..., n,

$$P[C_1^{(n)} = k] = \frac{1}{k!} \sum_{l=0}^{n-k} (-1)^l \frac{1}{l!},$$
 (1.2)

and the moments of $C_1^{(n)}$ follow from (1.2) with j = 1. In particular, for $n \ge 2$, the mean and variance of $C_1^{(n)}$ are both equal to 1. The joint distribution of $(C_1^{(n)}, ..., C_b^{(n)})$ for any $1 \le b \le n$ has an expression similar to (1.7); this too can be derived by inclusion-exclusion. For any $c = (c_1, ..., c_b) \in \square_+^b$ with $m = \sum i c_i$, $P[(C_1^{(n)}, ..., C_b^{(n)}) = c] = \left\{ \prod_{i=1}^b \left(\frac{1}{i}\right)^{c_i} \frac{1}{c_i \cdot !} \right\}_{\substack{l \ge 0 \text{ with} \\ \sum i l \le n-m}} (-1)^{l_1 + ... + l_b} \prod_{i=1}^b \left(\frac{1}{i}\right)^{l_i} \frac{1}{l_i \cdot !}$

The joint moments of the first *b* counts $C_1^{(n)}, ..., C_b^{(n)}$ can be obtained directly from (1.2) and (1.3) by setting $m_{b+1} = ... = m_n = 0$

The limit distribution of cycle counts

It follows immediately from Lemma 1.2 that for each fixed j, as $n \rightarrow \infty$,

$$P[C_j^{(n)} = k] \rightarrow \frac{j^{-k}}{k!} e^{-1/j}, \quad k = 0, 1, 2, ...,$$

So that $C_j^{(n)}$ converges in distribution to a random variable Z_j having a Poisson distribution with mean 1/j; we use the notation $C_j^{(n)} \rightarrow_d Z_j$ where

 $Z_j \square P_o(1/j)$ to describe this. Infact, the limit random variables are independent.

Theorem 1.6 The process of cycle counts converges in distribution to a Poisson process of \Box with intensity j^{-1} . That is, as $n \to \infty$,

$$(C_1^{(n)}, C_2^{(n)}, ...) \to_d (Z_1, Z_2, ...)$$
 (1.1)

Where the Z_i , j = 1, 2, ..., are independent Poisson-

distributed random variables with $E(Z_j) = \frac{1}{j}$

Proof. To establish the converges in distribution one shows that for each fixed $b \ge 1$, as $n \to \infty$,

$$P[(C_1^{(n)},...,C_b^{(n)})=c] \to P[(Z_1,...,Z_b)=c]$$

Error rates

The proof of Theorem says nothing about the rate of convergence. Elementary analysis can be used to estimate this rate when b = 1. Using properties of alternating series with decreasing terms, for k = 0, 1, ..., n,

$$\begin{aligned} &\frac{1}{k!} (\frac{1}{(n-k+1)!} - \frac{1}{(n-k+2)!}) \le \left| P[C_1^{(n)} = k] - P[Z_1 = k] \right| \\ &\le \frac{1}{k!(n-k+1)!} \end{aligned}$$

It follows that

$$\frac{2^{n+1}}{(n+1)!} \frac{n}{n+2} \le \sum_{k=0}^{n} \left| P[C_1^{(n)} = k] - P[Z_1 = k] \right| \le \frac{2^{n+1} - 1}{(n+1)!} \quad (1.11)$$

Since
$$(1.3)$$
$$P[Z_1 > n] = \frac{e^{-1}}{(n+1)!} (1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \dots) < \frac{1}{(n+1)!},$$

We see from (1.11) that the total variation distance between the distribution $L(C_1^{(n)})$ of $C_1^{(n)}$ and the distribution $L(Z_1)$ of Z_1

Establish the asymptotics of $P[A_n(C^{(n)})]$ under conditions (A_0) and (B_{01}) , where

$$A_{n}(C^{(n)}) = \bigcap_{1 \le i \le n} \bigcap_{r_{i}+1 \le j \le r_{i}} \{C_{ij}^{(n)} = 0\},$$

and $\zeta_{i} = (r_{i} / r_{id}) - 1 = O(i^{-g})$ as $i \to \infty$, for

some g' > 0. We start with the expression

$$P[A_{n}(C^{(n)})] = \frac{P[T_{0m}(Z') = n]}{P[T_{0m}(Z) = n]}$$

$$\prod_{\substack{i \le i \le n \\ r_{i}+1 \le j \le r_{i}}} \left\{ 1 - \frac{\theta}{ir_{i}} (1 + E_{i0}) \right\} \quad (1.1)$$

$$P[T_{0n}(Z') = n]$$

$$= \frac{\theta d}{n} \exp\left\{ \sum_{i \ge 1} [\log(1 + i^{-1}\theta d) - i^{-1}\theta d] \right\}$$

$$\left\{ 1 + O(n^{-1}\varphi_{\{1,2,7\}}(n)) \right\} \quad (1.2)$$
and
$$P[T_{0n}(Z') = n]$$

$$= \frac{\theta d}{n} \exp\left\{ \sum_{i \ge 1} [\log(1 + i^{-1}\theta d) - i^{-1}\theta d] \right\}$$

$$\left\{ 1 + O(n^{-1}\varphi_{\{1,2,7\}}(n)) \right\} \quad (1.3)$$
Where $e^{in} = (n)$ is formula to be matrixed with

Where $\varphi_{\{1,2,7\}}(n)$ refers to the quantity derived from Z. It thus follows that $P[A_n(C^{(n)})] \Box Kn^{-\theta(1-d)}$ for a constant K, depending on Z and the r_i and computable explicitly from (1.1) – (1.3), if Conditions (A_0) and (B_{01}) are satisfied and if $\zeta_i^* = O(i^{-g})$ from some g' > 0, since, under these circumstances, both $n^{-1}\varphi_{\{1,2,7\}}(n)$ and $n^{-1}\varphi_{\{1,2,7\}}(n)$ tend to zero as $n \to \infty$. In particular, for polynomials and square free polynomials, the relative error in this asymptotic approximation is of order n^{-1} if g' > 1.

For
$$0 \le b \le n/8$$
 and $n \ge n_0$, with n_0
 $d_{TV}(L(C[1,b]), L(Z[1,b]))$
 $\le d_{TV}(L(C[1,b]), L(Z[1,b]))$
 $\le \varepsilon_{\{7,7\}}(n,b),$

Where $\varepsilon_{\{7,7\}}(n,b) = O(b/n)$ under Conditions $(A_0), (D_1)$ and (B_{11}) Since, by the Conditioning Relation,

$$L(C[1,b] | T_{0b}(C) = l) = L(Z[1,b] | T_{0b}(Z) = l),$$

It follows by direct calculation that

$$d_{TV}(L(C[1,b]), L(Z[1,b])) = d_{TV}(L(T_{0b}(C)), L(T_{0b}(Z))) = \max_{A} \sum_{r \in A} P[T_{0b}(Z) = r] = \left\{1 - \frac{P[T_{bn}(Z) = n - r]}{P[T_{0n}(Z) = n]}\right\}$$
(1.4)

Suppressing the argument Z from now on, we thus obtain

$$\begin{split} &d_{TV}(L(C[1,b]), L(Z[1,b])) \\ &= \sum_{r \ge 0} P[T_{0b} = r] \left\{ 1 - \frac{P[T_{bn} = n - r]}{P[T_{0n} = n]} \right\}_{+} \\ &\leq \sum_{r > n/2} P[T_{0b} = r] + \sum_{r = 0}^{[n/2]} \frac{P[T_{0b} = r]}{P[T_{0b} = n]} \\ &\times \left\{ \sum_{s = 0}^{n} P[T_{0b} = s](P[T_{bn} = n - s] - P[T_{bn} = n - r] \right\}_{+} \end{split}$$

$$\leq \sum_{r>n/2} P[T_{0b} = r] + \sum_{r=0}^{[n/2]} P[T_{0b} = r]$$

$$\times \sum_{s=0}^{[n/2]} P[T_{0b} = s] \frac{\{P[T_{bn} = n - s] - P[T_{bn} = n - r]\}}{P[T_{0n} = n]}$$

$$+ \sum_{s=0}^{[n/2]} P[T_{0b} = r] \sum_{s=[n/2]+1}^{n} P[T = s] P[T_{bn} = n - s] / P[T_{0n} = n]$$

$$= \sum_{s=0}^{[n/2]} P[T_{0b} = r] \sum_{s=[n/2]+1}^{n} P[T = s] P[T_{bn} = n - s] / P[T_{0n} = n]$$

The first sum is at most $2n^{-1}ET_{0b}$; the third is bound by

$$\begin{aligned} &(\max_{n/2 < s \le n} P[T_{0b} = s]) / P[T_{0n} = n] \\ &\leq \frac{2\varepsilon_{\{10.5(1)\}}(n/2, b)}{n} \frac{3n}{\theta P_{\theta}[0, 1]}, \\ &\frac{3n}{\theta P_{\theta}[0, 1]} 4n^{-2} \phi_{\{10.8\}}^{*}(n) \sum_{r=0}^{[n/2]} P[T_{0b} = r] \sum_{s=0}^{[n/2]} P[T_{0b} = s] \frac{1}{2} |r-s| \\ &\leq \frac{12\phi_{\{10.8\}}^{*}(n)}{\theta P_{\theta}[0, 1]} \frac{ET_{0b}}{n} \end{aligned}$$

Hence we may take

$$\varepsilon_{\{7,7\}}(n,b) = 2n^{-1}ET_{0b}(Z) \left\{ 1 + \frac{6\phi_{\{10,8\}}^*(n)}{\theta P_{\theta}[0,1]} \right\} P + \frac{6}{\theta P_{\theta}[0,1]} \varepsilon_{\{10,5(1)\}}(n/2,b)$$
(1.5)

Required order under Conditions $(A_0), (D_1)$ and (B_{11}) , if $S(\infty) < \infty$. If not, $\phi_{\{10.8\}}^*(n)$ can be

replaced by $\phi_{(10,11)}^*(n)$ in the above, which has the required order, without the restriction on the r_i implied by $S(\infty) < \infty$. Examining the Conditions $(A_0), (D_1)$ and (B_{11}) , it is perhaps surprising to find that (B_{11}) is required instead of just (B_{01}) ; that is, that we should need $\sum_{l>2} l\varepsilon_{il} = O(i^{-a_1})$ to hold for some $a_1 > 1$. A first observation is that a similar problem arises with the rate of decay of \mathcal{E}_{i1} as well. For this reason, n_1 is replaced by n_1 . This makes it possible to replace condition (A_1) by the weaker pair of conditions (A_0) and (D_1) in the eventual assumptions needed for $\mathcal{E}_{\{7,7\}}(n,b)$ to be of order O(b/n); the decay rate requirement of order $i^{-1-\gamma}$ is shifted from \mathcal{E}_{i1} itself to its first difference. This is needed to obtain the right approximation error for the random mappings example. However, since all the classical applications make far more stringent assumptions about the $\mathcal{E}_{i1}, l \geq 2$, than are made in (B_{11}) . The critical point of the proof is seen where the initial estimate of the difference $P[T_{bn}^{(m)} = s] - P[T_{bn}^{(m)} = s+1]$. The factor $\mathcal{E}_{\{10,10\}}(n)$, which should be small, contains a far tail element from n_1 of the form $\phi_1^{\theta}(n) + u_1^*(n)$, which is only small if $a_1 > 1$, being otherwise of order $O(n^{1-a_1+\delta})$ for any $\delta > 0$, since $a_2 > 1$ is in any case assumed. For $s \ge n/2$, this gives rise to a contribution of order $O(n^{-1-a_1+\delta})$ in the estimate of the difference $P[T_{bn} = s] - P[T_{bn} = s+1]$, which, in the remainder of the proof, is translated into a contribution of order $O(tn^{-1-a_1+\delta})$ for differences of form $P[T_{bn} = s] - P[T_{bn} = s+1],$ the finally leading to a contribution of order $bn^{-a_1+\delta}$ for any $\delta > 0$ in $\mathcal{E}_{\{7,7\}}(n,b)$. Some improvement would seem to be possible, defining the function g by $g(w) = 1_{\{w=s\}} - 1_{\{w=s+t\}}$, differences that are of the form $P[T_{bn} = s] - P[T_{bn} = s + t]$ can be directly estimated, at a cost of only a single contribution of the form $\phi_1^{\theta}(n) + u_1^*(n)$. Then, iterating the cycle, in which one estimate of a difference in point

probabilities is improved to an estimate of smaller order, a bound of the form

$$\begin{split} \left| P[T_{bn} = s] - P[T_{bn} = s+t] \right| &= O(n^{-2}t + n^{-1-a_1+\delta}) \\ \text{for any } \delta > 0 \text{ could perhaps be attained, leading to a final error estimate in order } O(bn^{-1} + n^{-a_1+\delta}) \text{ for any } \delta > 0, \text{ to replace } \varepsilon_{\{7.7\}}(n,b). \text{ This would be of the ideal order } O(b/n) \text{ for large enough } b, \text{ but would still be coarser for small } b. \end{split}$$

With b and n as in the previous section, we wish to show that

$$\left| d_{TV}(L(C[1,b]), L(Z[1,b])) - \frac{1}{2}(n+1)^{-1} \left| 1 - \theta \right| E \left| T_{0b} - ET_{0b} \right| \\ \leq \varepsilon_{\{7,8\}}(n,b),$$

Where $\mathcal{E}_{\{7,8\}}(n,b) = O(n^{-1}b[n^{-1}b + n^{-\beta_{12}+\delta}])$ for any $\delta > 0$ under Conditions $(A_0), (D_1)$ and (B_{12}) , with β_{12} . The proof uses sharper estimates. As before, we begin with the formula

$$d_{TV}(L(C[1,b]), L(Z[1,b])) = \sum_{r \ge 0} P[T_{0b} = r] \left\{ 1 - \frac{P[T_{bn} = n - r]}{P[T_{0n} = n]} \right\}$$

Now we observe that

$$\begin{split} &\left|\sum_{r\geq 0} P[T_{0b}=r] \left\{ 1 - \frac{P[T_{bn}=n-r]}{P[T_{0n}=n]} \right\}_{+} - \sum_{r=0}^{[n/2]} \frac{P[T_{0b}=r]}{P[T_{0n}=n]} \\ &\times \left|\sum_{s=[n/2]+1}^{n} P[T_{0b}=s](P[T_{bn}=n-s] - P[T_{bn}=n-r])\right| \\ &\leq 4n^{-2} E T_{0b}^{2} + (\max_{n/2 < s \le n} P[T_{0b}=s]) / P[T_{0n}=n] \\ &+ P[T_{0b} > n/2] \\ &\leq 8n^{-2} E T_{0b}^{2} + \frac{3\varepsilon_{\{10.5(2)\}}(n/2,b)}{\theta P_{\theta}[0,1]}, \end{split}$$
(1.1)

We have

$$\left| \sum_{r=0}^{[n/2]} \frac{P[T_{0b} = r]}{P[T_{0n} = n]} \right| \\ \times \left(\left\{ \sum_{s=0}^{[n/2]} P[T_{0b} = s] (P[T_{bn} = n - s] - P[T_{bn} = n - r] \right\}_{+} - \left\{ \sum_{s=0}^{[n/2]} P[T_{0b} = s] \frac{(s - r)(1 - \theta)}{n + 1} P[T_{0n} = n] \right\}_{+} \right) \right|$$

$$\leq \frac{1}{n^{2} P[T_{0n} = n]} \sum_{r \geq 0} P[T_{0b} = r] \sum_{s \geq 0} P[T_{0b} = s] |s - r|$$

$$\times \left\{ \varepsilon_{\{10.14\}}(n, b) + 2(r \lor s) |1 - \theta| n^{-1} \left\{ K_{0} \theta + 4\phi_{\{10.8\}}^{*}(n) \right\} \right\}$$

$$\leq \frac{6}{\theta n P_{\theta}[0, 1]} E T_{0b} \varepsilon_{\{10.14\}}(n, b)$$

$$+ 4 |1 - \theta| n^{-2} E T_{0b}^{2} \left\{ K_{0} \theta + 4\phi_{\{10.8\}}^{*}(n) \right\}$$

$$\left(\frac{3}{\theta n P_{\theta}[0, 1]}\right) \left\}, \qquad (1.2)$$

The approximation in (1.2) is further simplified by noting that

$$\sum_{r=0}^{[n/2]} P[T_{0b} = r] \left| \left\{ \sum_{s=0}^{[n/2]} P[T_{0b} = s] \frac{(s-r)(1-\theta)}{n+1} \right\}_{+} - \left\{ \sum_{s=0} P[T_{0b} = s] \frac{(s-r)(1-\theta)}{n+1} \right\}_{+} \right| \\ \leq \sum_{r=0}^{[n/2]} P[T_{0b} = r] \sum_{s > [n/2]} P[T_{0b} = s] \frac{(s-r)|1-\theta|}{n+1} \\ \leq |1-\theta| n^{-1} E(T_{0b} | \{T_{0b} > n/2\}) \leq 2 |1-\theta| n^{-2} ET_{0b}^{2}, \quad (1.3)$$

and then by observing that

$$\sum_{r \ge \lfloor n/2 \rfloor} P[T_{0b} = r] \left\{ \sum_{s \ge 0} P[T_{0b} = s] \frac{(s-r)(1-\theta)}{n+1} \right\}$$

$$\leq n^{-1} \left| 1-\theta \right| (ET_{0b} P[T_{0b} > n/2] + E(T_{0b} 1\{T_{0b} > n/2\}))$$

$$\leq 4 \left| 1-\theta \right| n^{-2} ET_{0b}^{2}$$
(1.4)

Combining the contributions of (1.2) - (1.3), we thus find that

$$\left| \begin{array}{l} d_{TV}(L(C[1,b]), L(Z[1,b])) \\ -(n+1)^{-1} \sum_{r \ge 0} P[T_{0b} = r] \left\{ \sum_{s \ge 0} P[T_{0b} = s](s-r)(1-\theta) \right\}_{+} \\ \leq \varepsilon_{\{7,8\}}(n,b) \\ = \frac{3}{\theta P_{\theta}[0,1]} \left\{ \varepsilon_{\{10,5(2)\}}(n/2,b) + 2n^{-1}ET_{0b}\varepsilon_{\{10,14\}}(n,b) \right\} \\ + 2n^{-2}ET_{0b}^{2} \left\{ 4 + 3\left|1-\theta\right| + \frac{24\left|1-\theta\right|\phi_{\{10,8\}}^{*}(n)}{\theta P_{\theta}[0,1]} \right\}$$
(1.5)

The quantity $\mathcal{E}_{\{7,8\}}(n,b)$ is seen to be of the order claimed under Conditions $(A_0), (D_1)$ and (B_{12}) , provided that $S(\infty) < \infty$; this supplementary condition can be removed if $\phi_{\{10.8\}}^*(n)$ is replaced by $\phi_{\{10.11\}}^*(n)$ in the definition of $\mathcal{E}_{\{7,8\}}(n,b)$, has the required order without the restriction on the r_i implied by assuming that $S(\infty) < \infty$. Finally, a direct calculation now shows that

$$\begin{split} &\sum_{r \ge 0} P[T_{0b} = r] \left\{ \sum_{s \ge 0} P[T_{0b} = s](s - r)(1 - \theta) \right\}_{+} \\ &= \frac{1}{2} |1 - \theta| E |T_{0b} - ET_{0b}| \end{split}$$

Example 1.0. Consider the point $O = (0, ..., 0) \in \square^n$. For an arbitrary vector r, the coordinates of the point x = O + r are equal to the respective coordinates of the vector $r: x = (x^1, ..., x^n)$ and $r = (x^1, ..., x^n)$. The vector r such as in the example is called the position vector or the radius vector of the point x. (Or, in greater detail: r is the radius-vector of x w.r.t an origin O). Points are frequently specified by their radiusvectors. This presupposes the choice of O as the "standard origin". Let us summarize. We have considered \square^n and interpreted its elements in two ways: as points and as vectors. Hence we may say that we leading with the two copies of $\square^n : \square^n =$ {points}, $\square^n = {\text{vectors}}$

Operations with vectors: multiplication by a number, addition. Operations with points and vectors: adding a vector to a point (giving a point), subtracting two points (giving a vector). \Box^n treated in this way is called an *n*-dimensional affine space. (An "abstract" affine space is a pair of sets, the set of points and the set of vectors so that the operations as above are defined axiomatically). Notice that vectors in an affine space are also known as "free vectors". Intuitively, they are not fixed at points and "float

freely" in space. From \Box^n considered as an affine space we can precede in two opposite directions: \Box^n as an Euclidean space $\Leftarrow \Box^n$ as an affine space \Rightarrow \Box^n as a manifold.Going to the left means introducing some extra structure which will make the geometry richer. Going to the right means forgetting about part of the affine structure; going further in this direction will lead us to the so-called "smooth (or differentiable) manifolds". The theory of differential forms does not require any extra geometry. So our natural direction is to the right. The Euclidean structure, however, is useful for examples and applications. So let us say a few words about it:

Remark 1.0. Euclidean geometry. In \Box^n considered as an affine space we can already do a good deal of geometry. For example, we can consider lines and planes, and quadric surfaces like an ellipsoid. However, we cannot discuss such things as "lengths", "angles" or "areas" and "volumes". To be able to do so, we have to introduce some more definitions, making \Box^n a Euclidean space. Namely, we define the length of a vector $a = (a^1, ..., a^n)$ to be

$$|a| := \sqrt{(a^1)^2 + \dots + (a^n)^2}$$
 (1)

After that we can also define distances between points as follows:

$$d(A,B) \coloneqq \left| \overrightarrow{AB} \right| \tag{2}$$

One can check that the distance so defined possesses natural properties that we expect: is it always nonnegative and equals zero only for coinciding points; the distance from A to B is the same as that from B to A (symmetry); also, for three points, A, B and C, we have $d(A,B) \le d(A,C) + d(C,B)$ (the "triangle inequality"). To define angles, we first introduce the scalar product of two vectors

$$(a,b) \coloneqq a^1 b^1 + \dots + a^n b^n \tag{3}$$

Thus $|a| = \sqrt{(a,a)}$. The scalar product is also denote by dot: a.b = (a,b), and hence is often referred to as the "dot product". Now, for nonzero vectors, we define the angle between them by the equality

$$\cos \alpha \coloneqq \frac{(a,b)}{|a||b|} \tag{4}$$

The angle itself is defined up to an integral multiple of 2π . For this definition to be consistent we have to ensure that the r.h.s. of (4) does not exceed 1 by the absolute value. This follows from the inequality

$$(a,b)^{2} \le |a|^{2} |b|^{2}$$
 (5)

known as the Cauchy–Bunyakovsky–Schwarz inequality (various combinations of these three names are applied in different books). One of the ways of proving (5) is to consider the scalar square of the linear combination a+tb, where $t \in R$. As $(a+tb, a+tb) \ge 0$ is a quadratic polynomial in t which is never negative, its discriminant must be less or equal zero. Writing this explicitly yields (5). The triangle inequality for distances also follows from the inequality (5).

Example 1.1. Consider the function $f(x) = x^{i}$ (the i-th coordinate). The linear function dx^{i} (the differential of x^{i}) applied to an arbitrary vector h is simply h^{i} . From these examples follows that we can rewrite df as

$$df = \frac{\partial f}{\partial x^1} dx^1 + \dots + \frac{\partial f}{\partial x^n} dx^n, \qquad (1)$$

which is the standard form. Once again: the partial derivatives in (1) are just the coefficients (depending on x); dx^1 , dx^2 ,... are linear functions giving on an arbitrary vector h its coordinates h^1 , h^2 ,..., respectively. Hence

$$df(x)(h) = \partial_{hf(x)} = \frac{\partial f}{\partial x^{1}} h^{1} + \dots + \frac{\partial f}{\partial x^{n}} h^{n}, \quad (2)$$

Theorem 1.7. Suppose we have a parametrized curve $t \mapsto x(t)$ passing through $x_0 \in \square^n$ at $t = t_0$ and with the velocity vector $x(t_0) = v$ Then

$$\frac{df(x(t))}{dt}(t_0) = \partial_{\upsilon}f(x_0) = df(x_0)(\upsilon)$$
(1)

Proof. Indeed, consider a small increment of the parameter $t: t_0 \mapsto t_0 + \Delta t$, Where $\Delta t \mapsto 0$. On the other hand, we have $f(x_0 + h) - f(x_0) = df(x_0)(h) + \beta(h)|h|$ for an arbitrary vector h, where $\beta(h) \rightarrow 0$ when $h \rightarrow 0$. Combining it together, for the increment of f(x(t)) we obtain

$$f(x(t_0 + \Delta t) - f(x_0))$$

= $df(x_0)(\upsilon.\Delta t + \alpha(\Delta t)\Delta t)$
+ $\beta(\upsilon.\Delta t + \alpha(\Delta t)\Delta t).|\upsilon\Delta t + \alpha(\Delta t)\Delta t|$
= $df(x_0)(\upsilon).\Delta t + \gamma(\Delta t)\Delta t$

For a certain $\gamma(\Delta t)$ such that $\gamma(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$ (we used the linearity of $df(x_0)$). By the definition, this means that the derivative of f(x(t)) at $t = t_0$ is exactly $df(x_0)(v)$. The statement of the theorem can be expressed by a simple formula:

$$\frac{df(x(t))}{dt} = \frac{\partial f}{\partial x^1} x^1 + \dots + \frac{\partial f}{\partial x^n} x^n$$
(2)

To calculate the value Of df at a point x_0 on a given vector U one can take an arbitrary curve passing Through x_0 at t_0 with U as the velocity vector at t_0 and calculate the usual derivative of f(x(t)) at $t = t_0$.

Theorem 1.8. For functions $f, g: U \rightarrow \Box$, $U \subset \Box^n$, d(f+g) = df + dg (1) $d(fg) = df \cdot g + f \cdot dg$ (2)

Proof. Consider an arbitrary point x_0 and an arbitrary vector υ stretching from it. Let a curve x(t) be such that $x(t_0) = x_0$ and $x(t_0) = \upsilon$. Hence

$$d(f+g)(x_0)(v) = \frac{d}{dt}(f(x(t)) + g(x(t)))$$

at $t = t_0$ and

$$d(fg)(x_0)(\nu) = \frac{d}{dt}(f(x(t))g(x(t)))$$

at $t = t_0$ Formulae (1) and (2) then immediately follow from the corresponding formulae for the usual derivative Now, almost without change the theory generalizes to functions taking values in \square^m instead of \square . The only difference is that now the differential of a map $F: U \rightarrow \square^m$ at a point x will be a linear function taking vectors in \square^n to vectors in \square^m (instead of \square). For an arbitrary vector $h \in |\square^n$,

$$F(x+h) = F(x) + dF(x)(h) + \beta(h)|h|$$
(3)

Where
$$\beta(h) \to 0$$
 when $h \to 0$. We have
 $dF = (dF^1, ..., dF^m)$ and
 $dF = \frac{\partial F}{\partial x^1} dx^1 + ... + \frac{\partial F}{\partial x^n} dx^n$
 $= \begin{pmatrix} \frac{\partial F^1}{\partial x^1} ... \frac{\partial F^1}{\partial x^n} \\ ... & ... & ... \\ \frac{\partial F^m}{\partial x^1} ... \frac{\partial F^m}{\partial x^n} \end{pmatrix} \begin{pmatrix} dx^1 \\ ... \\ dx^n \end{pmatrix}$
(4)

In this matrix notation we have to write vectors as vector-columns.

Theorem 1.9. For an arbitrary parametrized curve x(t) in \Box^n , the differential of a map $F: U \to \Box^m$ (where $U \subset \Box^n$) maps the velocity vector x(t) to the velocity vector of the curve F(x(t)) in \Box^m : $\frac{dF(x(t))}{dt} = dF(x(t))(x(t)) \qquad (1)$

Proof. By the definition of the velocity vector,

$$x(t + \Delta t) = x(t) + x(t).\Delta t + \alpha(\Delta t)\Delta t$$
(2)

Where $\alpha(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$. By the definition of the differential,

$$F(x+h) = F(x) + dF(x)(h) + \beta(h)|h \qquad (3)$$

Where $\beta(h) \rightarrow 0$ when $h \rightarrow 0$. we obtain

$$F(x(t + \Delta t)) = F(x + \underbrace{x(t) \Delta t + \alpha(\Delta t)\Delta t}_{h})$$

= $F(x) + dF(x)(x(t)\Delta t + \alpha(\Delta t)\Delta t) +$
 $\beta(x(t)\Delta t + \alpha(\Delta t)\Delta t) \cdot \left| x(t)\Delta t + \alpha(\Delta t)\Delta t \right|$
= $F(x) + dF(x)(x(t)\Delta t + \gamma(\Delta t)\Delta t)$

For some $\gamma(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$. This

precisely means that dF(x)x(t) is the velocity vector of F(x). As every vector attached to a point can be viewed as the velocity vector of some curve passing through this point, this theorem gives a clear geometric picture of dF as a linear map on vectors. **Theorem 1.10** Suppose we have two maps $F: U \to V$ and $G: V \to W$, where $U \subset \square^n, V \subset \square^m, W \subset \square^p$ (open domains). Let $F: x \mapsto y = F(x)$. Then the differential of the composite map $GoF: U \to W$ is the composition of the differentials of F and G:d(GoF)(x) = dG(y)odF(x) (4)

Proof. We can use the description of the differential .Consider a curve x(t) in \Box^n with the velocity

vector x. Basically, we need to know to which vector in \Box^p it is taken by d(GoF). the curve (GoF)(x(t) = G(F(x(t))). By the same theorem, it equals the image under dG of the Anycast Flow vector to the curve F(x(t)) in \Box^m . Applying the theorem once again, we see that the velocity vector to the curve F(x(t)) is the image under dF of the

vector x(t). Hence d(GoF)(x) = dG(dF(x))

for an arbitrary vector x.

Corollary 1.0. If we denote coordinates in \Box^n by $(x^1, ..., x^n)$ and in \Box^m by $(y^1, ..., y^m)$, and write

$$dF = \frac{\partial F}{\partial x^1} dx^1 + \dots + \frac{\partial F}{\partial x^n} dx^n \tag{1}$$

$$dG = \frac{\partial G}{\partial y^1} dy^1 + \dots + \frac{\partial G}{\partial y^n} dy^n, \qquad (2)$$

Then the chain rule can be expressed as follows:

$$d(GoF) = \frac{\partial G}{\partial y^1} dF^1 + \dots + \frac{\partial G}{\partial y^m} dF^m, \qquad (3)$$

Where dF^i are taken from (1). In other words, to get d(GoF) we have to substitute into (2) the expression for $dy^i = dF^i$ from (3). This can also be expressed by the following matrix formula:

$$d(GoF) = \begin{pmatrix} \frac{\partial G^{1}}{\partial y^{1}} \dots \frac{\partial G^{1}}{\partial y^{m}} \\ \dots & \dots & \dots \\ \frac{\partial G^{p}}{\partial y^{1}} \dots \frac{\partial G^{p}}{\partial y^{m}} \end{pmatrix} \begin{pmatrix} \frac{\partial F^{1}}{\partial x^{1}} \dots \frac{\partial F^{1}}{\partial x^{n}} \\ \dots & \dots & \dots \\ \frac{\partial F^{m}}{\partial x^{1}} \dots \frac{\partial F^{m}}{\partial x^{n}} \end{pmatrix} \begin{pmatrix} dx^{1} \\ \dots \\ dx^{n} \end{pmatrix}$$
(4)

i.e., if dG and dF are expressed by matrices of partial derivatives, then d(GoF) is expressed by the product of these matrices. This is often written as

$$\begin{pmatrix} \frac{\partial z^{1}}{\partial x^{1}} \cdots \frac{\partial z^{1}}{\partial x^{n}} \\ \cdots & \cdots & \cdots \\ \frac{\partial z^{p}}{\partial x^{1}} \cdots \frac{\partial z^{p}}{\partial x^{n}} \end{pmatrix} = \begin{pmatrix} \frac{\partial z^{1}}{\partial y^{1}} \cdots \frac{\partial z^{1}}{\partial y^{m}} \\ \vdots & \cdots & \cdots \\ \frac{\partial z^{p}}{\partial y^{1}} \cdots \frac{\partial y^{1}}{\partial x^{n}} \\ \cdots & \cdots & \cdots \\ \frac{\partial y^{m}}{\partial x^{1}} \cdots \frac{\partial y^{m}}{\partial x^{n}} \end{pmatrix}, \quad (5)$$
Or
$$\frac{\partial z^{\mu}}{\partial x^{a}} = \sum_{i=1}^{m} \frac{\partial z^{\mu}}{\partial y^{i}} \frac{\partial y^{i}}{\partial x^{a}}, \quad (6)$$

Where it is assumed that the dependence of $y \in \square^m$ on $x \in \square^n$ is given by the map F, the dependence of $z \in \square^p$ on $y \in \square^m$ is given by the map G, and the dependence of $z \in \square^p$ on $x \in \square^n$ is given by the composition GoF.

Definition 1.6. Consider an open domain $U \subset \square^n$. Consider also another copy of \square^n , denoted for distinction \square_y^n , with the standard coordinates $(y^1...y^n)$. A system of coordinates in the open domain U is given by a map $F: V \to U$, where $V \subset \square_y^n$ is an open domain of \square_y^n , such that the following three conditions are satisfied :

- (1) F is smooth;
- (2) F is invertible;
- (3) $F^{-1}: U \to V$ is also smooth

The coordinates of a point $x \in U$ in this system are the standard coordinates of $F^{-1}(x) \in \Box_y^n$ In other words,

$$F:(y^{1}..., y^{n}) \mapsto x = x(y^{1}..., y^{n})$$
 (1)

Here the variables $(y^1..., y^n)$ are the "new" coordinates of the point x

Example 1.2. Consider a curve in \Box^2 specified in polar coordinates as $x(t): r = r(t), \varphi = \varphi(t)$ (1)

We can simply use the chain rule. The map $t \mapsto x(t)$ can be considered as the composition of

the maps $t \mapsto (r(t), \varphi(t)), (r, \varphi) \mapsto x(r, \varphi)$. Then, by the chain rule, we have

$$x = \frac{dx}{dt} = \frac{\partial x}{\partial r}\frac{dr}{dt} + \frac{\partial x}{\partial \varphi}\frac{d\varphi}{dt} = \frac{\partial x}{\partial r}r + \frac{\partial x}{\partial \varphi}\varphi$$

Here *r* and φ are scalar coefficients depending on *t*, whence the partial derivatives $\frac{\partial x}{\partial r}, \frac{\partial x}{\partial \varphi}$ are vectors depending on point in \Box^2 . We can compare this with the formula in the "standard" coordinates:

$$x = e_1 x + e_2 y \quad \text{Consider} \quad \text{the vectors}$$

$$\frac{\partial x}{\partial r}, \frac{\partial x}{\partial \varphi} \quad \text{Explicitly we have}$$

$$\frac{\partial x}{\partial r} = (\cos \varphi, \sin \varphi) \quad (3)$$

$$\frac{\partial x}{\partial \varphi} = (-r \sin \varphi, r \cos \varphi) \quad (4)$$

From where it follows that these vectors make a basis at all points except for the origin (where r = 0). It is instructive to sketch a picture, drawing vectors corresponding to a point as starting from that point. Notice that $\frac{\partial x}{\partial r}, \frac{\partial x}{\partial \varphi}$ are, respectively, the velocity vectors for the curves $r \mapsto x(r, \varphi)$ $(\varphi = \varphi_0 \ fixed)$ and $\varphi \mapsto x(r, \varphi) \ (r = r_0 \ fixed)$. We can conclude that for an arbitrary curve given in polar coordinates the velocity vector will have components (r, φ) if as a basis we take $e_r := \frac{\partial x}{\partial r}, e_{\varphi} := \frac{\partial x}{\partial \varphi}$: $x = e_r \ r + e_{\varphi} \ (5)$

A characteristic feature of the basis e_r, e_{φ} is that it is not "constant" but depends on point. Vectors "stuck to points" when we consider curvilinear coordinates.

Proposition 1.3. The velocity vector has the same appearance in all coordinate systems.

Proof. Follows directly from the chain rule and the transformation law for the basis e_i . In particular, the elements of the basis $e_i = \frac{\partial x}{\partial x^i}$ (originally, a formal notation) can be understood directly as the velocity vectors of the coordinate lines $x^i \mapsto x(x^1, ..., x^n)$ (all coordinates but x^i are fixed). Since we now know how to handle velocities in arbitrary coordinates, the best way to treat the differential of a map $F : \square^n \to \square^m$ is by its action on the velocity vectors. By definition, we set

$$dF(x_0):\frac{dx(t)}{dt}(t_0)\mapsto \frac{dF(x(t))}{dt}(t_0) \tag{1}$$

(2) Now $dF(x_0)$ is a linear map that takes vectors attached to a point $x_0 \in \square^n$ to vectors attached to the point $F(x) \in \square^m$

$$dF = \frac{\partial F}{\partial x^{1}} dx^{1} + \dots + \frac{\partial F}{\partial x^{n}} dx^{n}$$

$$(e_{1}, \dots, e_{m}) \begin{pmatrix} \frac{\partial F^{1}}{\partial x^{1}} \dots \frac{\partial F^{1}}{\partial x^{n}} \\ \dots & \dots & \dots \\ \frac{\partial F^{m}}{\partial x^{1}} \dots \frac{\partial F^{m}}{\partial x^{n}} \end{pmatrix} \begin{pmatrix} dx^{1} \\ \dots \\ dx^{n} \end{pmatrix}, \qquad (2)$$

In particular, for the differential of a function we always have

$$df = \frac{\partial f}{\partial x^1} dx^1 + \dots + \frac{\partial f}{\partial x^n} dx^n, \qquad (3)$$

Where x^i are arbitrary coordinates. The form of the differential does not change when we perform a change of coordinates.

Example 1.3 Consider a 1-form in \square^2 given in the standard coordinates:

A = -ydx + xdy In the polar coordinates we will have $x = r \cos \varphi$, $y = r \sin \varphi$, hence $dx = \cos \varphi dr - r \sin \varphi d\varphi$ $dy = \sin \varphi dr + r \cos \varphi d\varphi$ Substituting into A, we get $A = -r \sin \varphi (\cos \varphi dr - r \sin \varphi d\varphi)$ $+r \cos \varphi (\sin \varphi dr + r \cos \varphi d\varphi)$ $= r^2 (\sin^2 \varphi + \cos^2 \varphi) d\varphi = r^2 d\varphi$

Hence $A = r^2 d\varphi$ is the formula for A in the polar coordinates. In particular, we see that this is again a 1-form, a linear combination of the differentials of coordinates with functions as coefficients. Secondly, in a more conceptual way, we can define a 1-form in a domain U as a linear function on vectors at every point of U : $\omega(\upsilon) = \omega_1 \upsilon^1 + \ldots + \omega_n \upsilon^n$, (1) If $\upsilon = \sum e_i \upsilon^i$, where $e_i = \frac{\partial x}{\partial x^i}$. Recall that the

If $D = \sum e_i D$, where $e_i = \frac{\partial x_i}{\partial x^i}$. Recall that the differentials of functions were defined as linear functions on vectors (at every point), and

$$dx^{i}(e_{j}) = dx^{i} \left(\frac{\partial x}{\partial x^{j}}\right) = \delta_{j}^{i}$$
 (2) at

every point x.

Theorem 1.9. For arbitrary 1-form ω and path γ , the integral $\int_{\gamma} \omega$ does not change if we change parametrization of γ provide the orientation remains the same.

Proof: Consider
$$\left\langle \omega(x(t)), \frac{dx}{dt} \right\rangle$$
 and $\left\langle \omega(x(t(t'))), \frac{dx}{dt'} \right\rangle$ As $\left\langle \omega(x(t(t'))), \frac{dx}{dt'} \right\rangle = \left| \left\langle \omega(x(t(t'))), \frac{dx}{dt'} \right\rangle \cdot \frac{dt}{dt'},$

Let p be a rational prime and let $K = \Box (\zeta_p)$. We write ζ for ζ_p or this section. Recall that K has degree $\varphi(p) = p - 1$ over \Box . We wish to show that $O_K = \Box [\zeta]$. Note that ζ is a root of $x^p - 1$, and thus is an algebraic integer; since O_K is a ring we have that $\Box [\zeta] \subseteq O_K$. We give a proof without assuming unique factorization of ideals. We begin with some norm and trace computations. Let j be an integer. If j is not divisible by p, then ζ^j is a primitive p^{th} root of unity, and thus its conjugates are $\zeta, \zeta^2, \dots, \zeta^{p-1}$. Therefore

$$Tr_{K/2}(\zeta^{j}) = \zeta + \zeta^{2} + \dots + \zeta^{p-1} = \Phi_{p}(\zeta) - 1 = -1$$

If p does divide j, then $\zeta^{j} = 1$, so it has only the one conjugate 1, and $Tr_{K/\Box}(\zeta^{j}) = p-1$ By linearity of the trace, we find that

$$Tr_{K/\Box} (1-\zeta) = Tr_{K/\Box} (1-\zeta^2) = \dots$$
$$= Tr_{K/\Box} (1-\zeta^{p-1}) = p$$

We also need to compute the norm of $1-\zeta$. For this, we use the factorization

$$x^{p-1} + x^{p-2} + \dots + 1 = \Phi_p(x)$$

= $(x - \zeta)(x - \zeta^2) \dots (x - \zeta^{p-1});$

Plugging in x = 1 shows that

$$p = (1 - \zeta)(1 - \zeta^{2}) \dots (1 - \zeta^{p-1})$$

Since the $(1-\zeta^{j})$ are the conjugates of $(1-\zeta)$, this shows that $N_{K/\Box}(1-\zeta) = p$ The key result for determining the ring of integers O_K is the following.

LEMMA 1.9

$$(1-\zeta)O_{\kappa}\cap\Box=p\Box$$

Proof. We saw above that p is a multiple of $(1-\zeta)$ in O_K , so the inclusion $(1-\zeta)O_K \cap \Box \supseteq p\Box$ is immediate. Suppose now that the inclusion is strict. Since $(1-\zeta)O_K \cap \Box$ is an ideal of \Box containing $p\Box$ and $p\Box$ is a maximal ideal of \Box , we must have $(1-\zeta)O_K \cap \Box = \Box$ Thus we can write $1 = \alpha(1-\zeta)$ For some $\alpha \in O_K$. That is, $1-\zeta$ is a unit in O_K .

COROLLARY 1.1 For any
$$\alpha \in O_K$$
,
 $Tr_{K/\Box} ((1-\zeta)\alpha) \in p \square$
PROOF. We have

$$Tr_{K/\Box} ((1-\zeta)\alpha) = \sigma_1((1-\zeta)\alpha) + \dots + \sigma_{p-1}((1-\zeta)\alpha)$$

= $\sigma_1(1-\zeta)\sigma_1(\alpha) + \dots + \sigma_{p-1}(1-\zeta)\sigma_{p-1}(\alpha)$
= $(1-\zeta)\sigma_1(\alpha) + \dots + (1-\zeta^{p-1})\sigma_{p-1}(\alpha)$

Where the σ_i are the complex embeddings of K (which we are really viewing as automorphisms of K) with the usual ordering. Furthermore, $1-\zeta^j$ is a multiple of $1-\zeta$ in O_K for every $j \neq 0$. Thus $Tr_{K/\Box} (\alpha(1-\zeta)) \in (1-\zeta)O_K$ Since the trace is also a rational integer.

PROPOSITION 1.4 Let p be a prime number and let $K = |\Box| (\zeta_p)$ be the p^{th} cyclotomic field. Then $O_K = \Box [\zeta_p] \cong \Box [x] / (\Phi_p(x));$ Thus $1, \zeta_p, ..., \zeta_p^{p-2}$ is an integral basis for O_K . PROOF. Let $\alpha \in O_K$ and write

 $\alpha = a_0 + a_1 \zeta + \ldots + a_{p-2} \zeta^{p-2} \qquad \text{With} \quad a_i \in \Box \ .$ Then

$$\alpha(1-\zeta) = a_0(1-\zeta) + a_1(\zeta-\zeta^2) + \dots + a_{p-2}(\zeta^{p-2}-\zeta^{p-1})$$

By the linearity of the trace and our above calculations we find that $Tr_{K/\Box}(\alpha(1-\zeta)) = pa_0$ We also have

 $Tr_{K/\Box} (\alpha(1-\zeta)) \in p\Box$, so $a_0 \in \Box$ Next consider the algebraic integer $(\alpha - a_0)\zeta^{-1} = a_1 + a_2\zeta + ... + a_{p-2}\zeta^{p-3}$; This is an algebraic integer since $\zeta^{-1} = \zeta^{p-1}$ is. The same argument as above shows that $a_1 \in \Box$, and continuing in this way we find that all of the a_i are in \Box . This completes the proof.

Example 1.4 Let $K = \Box$, then the local ring $\Box_{(n)}$ is simply the subring of \Box of rational numbers with denominator relatively prime to p. Note that this ring $\Box_{(p)}$ is not the ring \Box_p of p -adic integers; to get \square_p one must complete $\square_{(p)}$. The usefulness of $O_{K,p}$ comes from the fact that it has a particularly simple ideal structure. Let a be any proper ideal of $O_{K,p}$ and consider the ideal $a \cap O_K$ of O_K . We claim that $a = (a \cap O_K)O_{K_n}$; That is, that a is generated by the elements of a in $a \cap O_{\kappa}$. It is clear from the definition of an ideal that $a \supseteq (a \cap O_K) O_{K,p}$. To prove the other inclusion, let α be any element of a. Then we can write $\alpha = \beta / \gamma$ where $\beta \in O_K$ and $\gamma \notin p$. In particular, $\beta \in a$ (since $\beta / \gamma \in a$ and a is an ideal), so $\beta \in O_{\kappa}$ and $\gamma \notin p$. so $\beta \in a \cap O_{\kappa}$. $1/\gamma \in O_{K,n}$, this Since implies that $\alpha = \beta / \gamma \in (\alpha \cap O_K)O_{K,p}$, as claimed. We can use this fact to determine all of the ideals of $O_{K,p}$. Let *a* be any ideal of $O_{K,p}$ and consider the ideal factorization of $a \cap O_K$ in O_K . write it as $a \cap O_{\kappa} = p^{n}b$ For some *n* and some ideal *b*, relatively prime to p. we claim first that $bO_{K,p} = O_{K,p}$. We now find that

 $a = (a \cap O_K)O_{K,p} = p^n bO_{K,p} = p^n O_{K,p}$ Since $bO_{K,p}$. Thus every ideal of $O_{K,p}$ has the form $p^n O_{K,p}$ for some *n*; it follows immediately that $O_{K,p}$ is noetherian. It is also now clear that $p^n O_{K,p}$ is the unique non-zero prime ideal in $O_{K,p}$. Furthermore, the inclusion $O_K \mapsto O_{K,p} / pO_{K,p}$ Since $pO_{K,p} \cap O_K = p$, this map is also surjection, since the residue class of $\alpha / \beta \in O_{K,p}$ (with $\alpha \in O_K$ and $\beta \notin p$) is the image of $\alpha\beta^{-1}$ in

 $O_{K/p}$, which makes sense since β is invertible in $O_{K/p}$. Thus the map is an isomorphism. In particular, it is now abundantly clear that every nonzero prime ideal of $O_{K,p}$ is maximal. To show that O_{κ_n} is a Dedekind domain, it remains to show that it is integrally closed in K. So let $\gamma \in K$ be a root of a polynomial with coefficients in O_{K_n} ; write this polynomial as $x^m + \frac{\alpha_{m-1}}{\beta_{m-1}} x^{m-1} + \dots + \frac{\alpha_0}{\beta_0}$ $\alpha_i \in O_K$ and $\beta_i \in O_{K-n}$. With Set $\beta = \beta_0 \beta_1 \dots \beta_{m-1}$. Multiplying by β^m we find that $\beta\gamma$ is the root of a monic polynomial with coefficients in O_{κ} . Thus $\beta \gamma \in O_{\kappa}$; since $\beta \notin p$, we have $\beta \gamma / \beta = \gamma \in O_{K,p}$. Thus $O_{K,p}$ is integrally close in K.

COROLLARY 1.2. Let *K* be a number field of degree *n* and let α be in O_K then $N_{K/\Box}(\alpha O_K) = |N_{K/\Box}(\alpha)|$

PROOF. We assume a bit more Galois theory than usual for this proof. Assume first that K/\Box is Galois. Let σ be an element of $Gal(K/\Box)$. It is that $\sigma(O_{\kappa}) / \sigma(\alpha) \cong O_{\kappa/\alpha};$ clear since $\sigma(O_{\kappa}) = O_{\kappa},$ this shows that $N'_{K/\square}(\sigma(\alpha)O_{K}) = N'_{K/\square}(\alpha O_{K})$. Taking the product over all $\sigma \in Gal(K/\Box)$, we have $N_{K/\square}^{\prime} \left(N_{K/\square} \left(\alpha \right) O_{K} \right) = N_{K/\square}^{\prime} \left(\alpha O_{K} \right)^{n}$ Since $N_{_{K/\!\square}}\left(lpha
ight)$ is a rational integer and $O_{_K}$ is a free \square module of rank n,

 $O_{K} / N_{K/\square}(\alpha) O_{K}$ Will have order $N_{K/\square}(\alpha)^{n}$; therefore

$$\dot{N_{K/\Box}} (N_{K/\Box} (\alpha) O_K) = N_{K/\Box} (\alpha O_K)^n$$

This completes the proof. In the general case, let L be the Galois closure of K and set [L:K] = m.

THE TREND TOWARDS BIONIC FEET

V. THE TREND TOWARDS BIONIC FEET

In the previous sections, an update of prosthetic feet technology is provided. The evolution from early conventional

feet to advanced ESR feet is explained. TT amputees still prefer advanced ESR feet above CP. Of course, this is purely an issue of comfort as it is clearly seen that, despite advanced engineering and manufacturing technology, no prosthetic foot provides energy return that results in statistically significant decreasing metabolics and improved gait. In [21], stiffness plots of the human ankle during walking are presented and discussed. Similar plots are shown in [4] together with changes in intrinsic stiffness characteristics of the ankle with different walking speeds. Bearing in mind these human ankle characteristics and the total replication thereof by a prosthetic device, recently prosthetic researchers consider 'mimicking total human ankle behavior' a first design challenge to face, rather than just assuring energy return at a specific instant during gait. Consequently, the past years have seen the development of several so-called bionic feet. For the purposes of this paper, a bionic foot is defined as a mechanical device with (an) active component(s) that is worn by a lower-limb amputee. Most of the developed bionic feet are currently still on a research level, except one prosthetic device that is already

commercialized. They can be categorized—based on their actuation principle—as: (1) pneumatically driven devices, and (2) electrically driven devices. Both approaches are presented below.

A. Pneumatically driven devices

In [22] and [23], Klute et al. describe the design of a muscle-like pneumatic actuator for TT prostheses. Based on simulation results, they reported that the powered prosthesis was expected to provide high torque (110 Nm) output and establish ankle range of motion of 30 °. It was stated that their unique system can serve as actuator for prosthetic limbs. Despite the aforementioned research work on muscle-like actuators, the only published material-to the author's knowledge-concerning this pneumatically powered prosthesis consists of a photograph on the respective author's website. Following a similar 'pneumatic approach', the Robotics & Multibody Mechanics research group (Vrije Universiteit Brussel, Belgium) is currently developing a prototype of a TT prosthesis powered by Pleated Pneumatic Artificial Muscles (PPAMs). Concept and working principle of this specific actuator are discussed in [24]. For more information on different approaches to control PPAMs the reader is referred to [25]. The prosthesis prototype is equipped with three PPAMs; one is placed in front, two are placed at the back and work in parallel. A torque output of 200 Nm can easily be achieved with a muscle pressure of only 3 bar, which is comparable with the pressure inside a bicycle tire. An ankle range of motion of 30 ° is established. Aspects as pneumatic power generation and autonomy are not yet investigated as the first prototype provides a test bed for proof-of-concept and evaluating control algorithms. Dimensioning of the actuators and design of the prototype are described in [26]. Successful walking experiments

with a TT amputee wearing the prosthesis prototype have been performed. Sup et al. [27] reported on the design of a pneumatically powered transfemoral prosthesis. A first prototype has been built and serves as laboratory test bed. The work of Sup et al. is mentioned in this review because the prosthesis prototype consists of both an articulated knee and ankle joint. Two pneumatic cylinders are used to power the full prosthetic lower limb. Different control strategies were investigated and presented in [28]. For purposes of control validation and proofof- concept an able-bodied adaptor was worn by a healthy subject. The measured ankle characteristics seem to correspond closely with these needed for normal walking. Displays a comparison of the maximum output torque of the prosthesis to the required ankle joint torque at different walking speeds.

B. Electrically driven devices

Major part of the research work on prosthetic feet with

electrical actuators comes from 'Massachusetts Institute of Technology (MIT) Media Laboratory'. Au et al. [29] have built a powered prosthetic foot that is capable of mimicking normal ankle behavior, as discussed in Section II-A. The system uses a combination of a spring and a 'Series Elastic Actuator (SEA)' [30][31] to provide desired requirements for normal walking. Controller design is presented in [32] and [33]. Peak torque output of 140Nm and power output of 350W is noted, with a torque bandwidth up to 3.5Hz. The prosthetic ankle stiffness changes according to the phase in the walking cycle. Neither metabolic ambulatory rates, nor objective gait analyses were performed on TT amputees when fitted with the prosthesis prototype. Nevertheless, given its favorable performance properties, Au et al. strongly believe that their prosthesis may reduce metabolic energy cost and provide a more natural gait than any other conventional prosthesis currently available. To the author's knowledge, today, there is only one bionic foot available on the market. O" ssur. a major manufacturer of prosthetic componentry recently commercialized the so called 'Proprio Foot' . This prosthetic foot is not a 'true' actively powered foot as it does not provide more power to the amputee than the power stored during gait. Thus, in that case it functions as a common ESR foot. For this review, however, the 'Proprio Foot' is classified under bionic feet because it makes use of active components to quasi-statically adjust its ankle angle to better accommodate sitting and slopes. Yet, no published literature of walking tests with the latter prosthetic foot exists to the best of the author's knowledge.

VI. CONCLUSION

In this paper an overview of current prosthetic feet has been given. Prior work in investigating performance characteristics of prosthetic feet by objective and subjective analyses is discussed. The evolution from early prosthetic feet to recent bionic feet is presented bearing in mind the importance of human ankle biomechanics. Early prosthetic feet, meaning 'prior to the 1980s', were designed with the primary goal of establishing basic walking. Very little attention was given to restoring sufficient ankle power during gait. Possibly, this can be attributed to the less sophisticated technology available at that time. The restricted potential of early feet has hadand still has-a large impact on TT amputee gait. Thanks to large technological advances, the past two decades have seen the development of numerous prosthetic feet with enhanced mechanical performance. Beside cosmetic appearance purposes, more attention was given-in prosthetic design-to the biomechanical behavior of the anklefoot structure. Especially the high ankle moment in late stance was partially recovered in prosthetic feet using specific 'energy storing' materials, such as visco-elastic components and mechanical springs. Engineering challenges in providing shock absorbance at heel strike were faced using shock absorbing pylons. Despite the aforementioned technological progress in prosthetic feet, however, none of the ESR feet currently available is capable of decreasing energy cost of walking and gait asymmetries. Nowadays, it is strongly believed that new prosthetic feet concepts should be equipped with active components when trying to entirely mimic human ankle behavior. One can hypothesize that such bionic feet may enhance patient's gait pattern and decrease energy metabolics.

A. Authors and Affiliations

Dr Akash Singh is working with IBM Corporation as an IT Architect and has been designing Mission Critical System and Service Solutions; He has published papers in IEEE and other International Conferences and Journals.

He joined IBM in Jul 2003 as a IT Architect which conducts research and design of High Performance Smart Grid Services and Systems and design mission critical architecture for High Performance Computing Platform and Computational Intelligence and High Speed Communication systems. He is a member of IEEE (Institute for Electrical and Electronics Engineers). the AAAI (Association for Advancement of Artificial Intelligence) and the AACR (American Association for Cancer Research). He is the recipient of numerous awards from World Computer Science, Congress in Computer Engineering and Applied Computing 2010, 2011, and IP Multimedia System 2008 and Billing and Roaming 2008. He is active research in the field of Artificial Intelligence and advancement in Medical Systems. He is in Industry for 18 Years where he performed various role to provide the Leadership in Information Technology and Cutting edge Technology.

VII. REFERENCES

[1] J. Perry and S. Shanfield, "Efficiency of dynamic elastic response prosthetic feet," Journal of Rehabilitation Research and Development, vol. 30, no. 1, pp. 137–143, 1993.

[2] D. Winter, "Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences." Clin. Orthop., vol. 175, pp. 147–154, 1983.

[3] J. Perry, Gait analysis: Normal and Pathological Function, ser. ISBN 1-55642-192-3. Slack Incorporated, 1992.

[4] A. Hansen, D. Childress, S. Miff, S. Gard, and K. Mesplay, "The human ankle during walking: implications for design of biomimetic ankle prostheses," Journal of Biomechanics, vol. 37, pp. 1467–1474, 2004.

[5] D. Winter, The biomechanics and motor control of human gait: Normal, elderly and pathological. University of Waterloo Press, 1991.

[6] F. te Riele, "The heelfoot—design of a plantarflexing prosthetic foot," PhD Thesis (Universiteit Twente, Enschede), 2003.

[7] B. Hafner, J. Sanders, J. Czerniecki, and J. Fergason, "Transtibial energy-storage-and-return prosthetic devices: A review of energy concepts and a proposed nomenclature," Journal of Rehabilitation Research and Development.

[8] M. Menard and D. Murray, "Subjective and objective analysis of an energy-storing prosthetic foot." Journal of Prosthetics and Orthotics, vol. 1, no. 4, 1989.

[9] D. Nielsen, D. Shurr, J. Golden, and K. Meier, "Comparison of energy cost and gait efficiency during ambulation in below-knee amputees using different prosthetic feet: A preliminary report," Journal of Prosthetics and Orthotics, vol. 1, no. 1, pp. 24–31, 1989.

[10] R. Waters, J. Perry, D. Antonelli, and H. Hislop, "Energy cost of walking of amputees: The influence of level amputation," J. Bone Joint Surg. Am., vol. 58, no. 1, pp. 42–46, 1976.

[11] G. Colborne, S. Naumann, P. Longmuir, and D. Berbrayer, "Analysis of mechanical and metabolic factors in the gait of congenital below knee amputees. a comparison of the sach and seattle feet." Am. J. Phys. Med. Rehabil., vol. 71, no. 5, pp. 272– 278, 1992.

[12] P. Macfarlane, D. Nielsen, D. Shurr, and K. Meier, "Gait comparisons for below-knee amputees using a flex-foot(tm) versus a conventional prosthetic foot," Journal of Prosthetics and Orthotics, vol. 3, no. 4, pp. 150–161, 1991.

[13] H. Alaranta, A. Kinnunen, M. Karkkainen, T. Pohjolainen, and M. Heliovaara, "Practical benefits of flex-foot in below-knee amputees," Journal of Prosthetics and Orthotics, vol. 3, no. 4, pp. 179–181, 1991.

[14] A. Gitter, J. Czerniecki, and D. DeGroot, "Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking," Amer. J. Phys. Med., vol. 70, pp. 142–148, 1991.

[15] A. Barr, K. Lohmann Siegel, J. Danoff, C. McGarvey, A. Tomasko, I. Sable, and S. Stanhope, "Biomechanical comparison of the energystoring capabilities of sach and carbon copy ii prosthetic feet during the stance phase of gait in a person with below-knee amputation." Physical Therapy, vol. 72, no. 5, pp. 344–354, 1992.

[16] J. Casillas, V. Dulieu, M. Cohen, I. Marcer, and J. Didier, "Bioenergetic