Odd Vertex Magic Labeling

C.Y.Ponnappan ${ }^{1}$, CT.Nagaraj ${ }^{2}$, G.Prabakaran ${ }^{3}$
${ }^{1}$ Research Supervisor and Assistant Professor, Department of Mathematics, Government Arts College, Paramakudi-623 707, Tamilnadu, India
${ }^{2}$ Assistant Professor, Department of Mathematics, Arignar Anna Arts \& Science College, Krishnagiri - 635 001,Tamilnadu,India
${ }^{3}$ Assistant Professor, Department of Mathematics, Thiagarajar College, Madurai - 625 009, Tamilnadu, India

Abstract

A vertex-magic labeling is an assignment of the integers from $1,2,3, \ldots \ldots . m+n$ to the vertices and edges of G so that at each vertex, the vertex label and the labels on the edges incident at that vertex add to a fixed constant. In this paper, we introduce a new concept odd s vertex labeling of a graph an f establish some families of a graphs have odd super vertex magic labeling

1.InTRODUCTION

In this paper, we consider only finite simple undirected graph. The graph G has vertex set $\mathrm{V}=\mathrm{V}(\mathrm{G})$ and edge set $\mathrm{E}=\mathrm{E}(\mathrm{G})$ and we take $\mathrm{m}=|\mathrm{E}|$ and $\mathrm{n}=|\mathrm{V}|$. The set of vertices adjacent to a vertex u of G is denoted by $N(u)$. In the notion of a vertex-magic total labeling was introduced. This is an assignment of the integers from 1 to $m+n$ to the vertices and edges of G so that at each vertex, the vertex label and the labels on the edges incident at that vertex, add to a fixed constant more formally, a one to one map from $\mathrm{V} \cup \mathrm{E}$ onto the integers $\{1,2,3 \ldots . \mathrm{m}+\mathrm{n}\}$ is a vertex-magic total labeling if there is a constant k and so that for every vertex $u f(u)+\sum f(u v)=k$ where the sum runs over all vertices v adjacent to u.

Definition: 1.1

A vertex magic labeling f is called odd vertex magic-labeling if

$$
\begin{gathered}
\mathrm{f}: \mathrm{V} \rightarrow\{1,3,5, \ldots \ldots . .2 \mathrm{n}-1\} \text { and } \mathrm{f}: \mathrm{E} \rightarrow \\
\{1,2,3,4 \ldots \ldots \mathrm{~m}+\mathrm{n}\}-\{1,3,5, \ldots \ldots . .2 \mathrm{n}-1\} \\
(\text { if } \mathrm{m} \geq \mathrm{n}-1)
\end{gathered}
$$

Otherwise :

$$
\mathrm{f}: \mathrm{E} \rightarrow\{2,4,6, \ldots \ldots \ldots .2 \mathrm{~m}\} \text { and } \mathrm{f}: \mathrm{V} \rightarrow
$$

$$
\{1,2,3,4 \ldots \ldots . m+n\}-\{2,4,6, \ldots \ldots . .2 m\}
$$

Example:

2. Main Results

Theorem : 2.1

Let G be a nontrivial graph G with $m \geq n-1$ is odd vertex magic labeling then the magic constant k is given by $\mathrm{k}=3 \mathrm{n}-2$ when $\mathrm{m}=\mathrm{n}-1$ otherwise $\mathrm{k}=1+2 \mathrm{~m}$ $+\frac{m^{2}}{n}+\frac{m}{n}$

Proof:

Let f be a odd vertex magic labeling of a graph G with the magic number k .
Then $\mathrm{f}(\mathrm{v})=\{1,3,5 \ldots \ldots \ldots .2 \mathrm{n}-1\} \quad$ and
$\mathrm{k}=\mathrm{f}(\mathrm{u})+\sum_{v \in N(u)} f(\mathrm{uv}) \quad \forall \mathrm{u} \in \mathrm{V}$.
$\mathrm{Case}(\mathrm{i}) \mathrm{m}=\mathrm{n}-1$
$\mathrm{n}+\mathrm{m}=2 \mathrm{n}-1$
$\mathrm{f}: \mathrm{V} \rightarrow\{1,3,5,7, \ldots \ldots .2 \mathrm{n}-1\}$
$\mathrm{f}: \mathrm{E} \rightarrow\{2,4,6 \ldots \ldots \ldots \ldots .2 \mathrm{n}-2\}$
$\mathrm{nk}=\mathrm{n}^{2}+2(2+4+6+\ldots \ldots \ldots \ldots .2 \mathrm{n}-2)$
$\mathrm{nk}=\mathrm{n}^{2}+2 \mathrm{n}(\mathrm{n}-1)$
$\mathrm{k}=3 \mathrm{n}-2$
case(ii) m>n-1
$\mathrm{f}: \mathrm{V} \rightarrow\{1,3,5,7, \ldots \ldots .2 \mathrm{n}-1\}$
$\mathrm{f}: \mathrm{E} \rightarrow\{2,4,6,8 \ldots \ldots \ldots \ldots 2 \mathrm{n}-2,2 \mathrm{n}, 2 \mathrm{n}+1,2 \mathrm{n}+2 \ldots \ldots \ldots . \mathrm{n}+\mathrm{m}\}$
$\mathrm{f}: \mathrm{E} \rightarrow\{2,4,6,8 \ldots \ldots \ldots \ldots .2 \mathrm{n}-$
$2,2 \mathrm{n}, 2 \mathrm{n}+1,2 \mathrm{n}+2 \ldots \ldots \ldots .2 \mathrm{n}+(\mathrm{m}-\mathrm{n})\}$
$\mathrm{nk}=\mathrm{n}^{2}+2(2+4+6+\ldots \ldots \ldots .2 \mathrm{n}-$
$2+2 \mathrm{n})+2(2 \mathrm{n}+1+2 \mathrm{n}+2+\ldots \ldots \ldots \ldots \ldots+2 \mathrm{n}+(\mathrm{m}-\mathrm{n}))$
$\mathrm{nk}=\mathrm{n}^{2}+2 \mathrm{n}(\mathrm{n}+1)+4 \mathrm{n}(\mathrm{m}-\mathrm{n})+(\mathrm{m}-\mathrm{n})(\mathrm{m}-\mathrm{n}+1)$
$\mathrm{k}=1+2 \mathrm{~m}+\frac{m^{2}}{n}+\frac{m}{n}$

Theorem: 2.2

Let G be a nontrivial graph G with $\mathrm{m}<\mathrm{n}-1$ is odd vertex magic labeling then the magic constant k is given by

$$
\mathrm{K}=\frac{n}{2}+\mathrm{m}+\frac{1}{2}+\frac{3}{2 n}\left(m^{2}+m\right)
$$

Proof

Let f be a odd vertex magic labeling of a graph G with the magic number k

Let G be a graph with $\mathrm{m}<\mathrm{n}-1$
Then $\mathrm{k}=\mathrm{f}(\mathrm{u})+\sum_{v \in N(u)} f(u v) \quad \forall \mathrm{u} \in \mathrm{V}$.
$\mathrm{f}: \mathrm{E} \rightarrow\{2,4,6 \ldots \ldots . .2 \mathrm{~m}\} \quad$ and
$\mathrm{f}: \mathrm{V} \rightarrow\{1,2,3 \ldots \ldots \ldots . \mathrm{m}+\mathrm{n}\}-\{2,4,6 \ldots \ldots \ldots \ldots .2 \mathrm{~m}\}$
$n k=1+2+3+\ldots \ldots \ldots+n+m)-$
$(2+4+6+\ldots \ldots . .+2 m)+2(2+4+6+\ldots \ldots \ldots .+2 m)$
$\mathrm{nk}=\frac{n^{2}}{2}+\mathrm{nm}+\frac{n}{2}+3 \frac{m^{2}}{2}+3 \frac{m}{2} \quad /$
$\mathrm{k}=\frac{n}{2}+\mathrm{m}+\frac{1}{2}+\frac{3}{2 n}\left(m^{2}+m\right)$
Theorem:2.3
A path P_{n} is odd super vertex magic labeling if and only if n is odd and $n \geq 3$

Proof:

Suppose there exists an odd vertex magic labeling f of P_{n} with the magic number k.

Then by theorem 2.1

$$
\mathrm{K}=3 \mathrm{n}-2
$$

To prove that n is odd:

Suppose n is even. Then $k=3 n-2$ is even. For any odd vertex magic labeling $f, f(u)+\sum f(u v)=k \quad \forall u \in V$. In

Let n be an odd integer and $\mathrm{n} \geq 3$
$\mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3} \ldots \ldots \ldots . . \mathrm{v}_{\mathrm{n}}\right\}$ and $\mathrm{E}\left(\mathrm{P}_{\mathrm{n}}\right)=\left\{\mathrm{e}_{\mathrm{i}}=\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-\right.$ 1\}
Define $\mathrm{f}: \mathrm{VUE} \rightarrow\{1,2,3 \ldots \ldots \ldots \ldots \ldots .2 \mathrm{n}-1\}$ as follows
$\mathrm{f}\left(\mathrm{v}_{1}\right)=2 \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-3,2 \leq \mathrm{i} \leq \mathrm{n}$

$$
f\left(e_{i}\right)= \begin{cases}n-i & \text { if } i \text { is odd } \\ 2 n-i & \text { if is even }\end{cases}
$$

It is easily seen that f is an odd vertex magic labeling with the magic number $3 n-2$.

Theorem : 2.4
A cycle C_{n} is odd vertex magic labeling iff n is odd.

Proof:

Suppose there exists an odd vertex magic labeling f of C_{n} with the magic number k

Then by theorem 2.1
$\mathrm{K}=1+2 \mathrm{n}+\frac{n^{2}}{n}+\frac{n}{n}$
$K=3 n+2$
To prove that n is odd
Suppose n is even. Then $k=3 n+2$ is even. For any odd vertex magic labeling $f, f(u)+\sum f(u v)=k$ $\forall u \in V$. In particular $f\left(v_{i}\right)+f\left(v_{i} v_{i-1}\right)+f\left(v_{i} v_{i+1}\right)=k$, which is a contradiction. Since $f\left(v_{i}\right)$ is odd and $f\left(v_{i} v_{i-1}\right)$ and $f\left(v_{i} v_{i+1}\right)$ are even. Therefore n is odd.

Converse:

Let n be an odd integer .
$\mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3} \ldots \ldots \ldots . . \mathrm{v}_{\mathrm{n}}\right\}$ and
$\mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right)=\left\{\mathrm{e}_{\mathrm{i}}=\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1} / 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{\mathrm{e}_{\mathrm{n}}=\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}\right\}$
Define $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2,3 \ldots \ldots \ldots \ldots . .2 \mathrm{n}\}$ as
follows
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1 \quad 1 \leq \mathrm{i} \leq \mathrm{n}$

$$
f\left(e_{i}\right)= \begin{cases}2 n-i+1 & \text { if } i \text { is odd } \\ n-i+1 & \text { if } i \text { is even }\end{cases}
$$ particular if u is a pendent vertex of P_{n} then $f(u)+f(u v)_{t}$ is easily seen that f is an odd vertex magic labeling with $=k$, which is a contradiction. Since $f(u)$ is odd and $f(u t h) e$ magic number $3 n+2$. is even.

Therefore n is odd.

Converse :

3. ODD VERTEX MAGIC LABELING ON A DISCONNECTED GRAPH

In this section, we give an odd vertex magic labeling for the disconnected graph mC_{3} that is ,the disjoint union of m cycles of length 3 , where m is odd.

Theorem : 3.1
$\mathrm{m} \mathrm{C}_{3}$ is odd vertex magic labeling if and only
if m is odd.

Proof:

Suppose there exists an odd vertex magic labeling of $\mathrm{m} \mathrm{C}_{3}$ with the magic number k.Then by theorem 2.1
$\mathrm{K}=1+6 \mathrm{~m}+\frac{(3 m)^{2}}{3 m}+\frac{3 m}{3 m}$
$K=1+6 m+3 m+1$
$K=9 m+2$

To prove that m is odd

Suppose m is even. Then $k=9 m+2$ is even. For any odd vertex magic labeling $f, f(u)+\sum f(u v)=k$ $\forall u \in V$. In particular $f\left(v_{i}\right)+f\left(v_{i} v_{i-1}\right)+f\left(v_{i} v_{i+1}\right)=k$, which is a contradiction. Since $f\left(v_{i}\right)$ is odd and $f\left(v_{i} v_{i-1}\right)$ and $f\left(v_{i} v_{i+1}\right)$ are even. Therefore m is odd.

Let m be odd integer. Assume that the graph mC_{3} has vertex set $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2} \mathrm{U}$. \qquad . UV_{m} where $V_{i}=\left\{v_{i 1}, V_{i 2}, V_{i 3}\right\}$ and the edge $E=$ $\mathrm{E}_{1} \cup \mathrm{E}_{2} \cup \cup E_{m}$ where $\mathrm{E}_{\mathrm{i}}=\left\{\mathrm{e}_{\mathrm{i} 1}, \mathrm{e}_{\mathrm{i} 2}, \mathrm{e}_{\mathrm{i} 3}\right\}$ and $e_{i j}=V_{i j} V_{i(j+1)}$ for $1 \leq i \leq m, 1 \leq j \leq 2, e_{i 3}=v_{i 3} V_{i 1}$

Define $f ; V \rightarrow\{1,3,5 \ldots6 m-1\}$ as follows
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i} 1}\right)=2 \mathrm{i}-1, \mathrm{I}=1,2 \ldots \ldots . . . \mathrm{m}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i} 2}\right)=\left\{\begin{array}{cc}5 m+2 i & 1 \leq i \leq(m-1) / 2 \\ 3 m+2 i & \frac{m+1}{2} \leq i \leq m\end{array}\right.$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i} 3}\right)=\left\{\begin{array}{cc}4 m-4 i+1 & 1 \leq i \leq(m-1) / 2 \\ 6 m-4 i+1 & \frac{m+1}{2} \leq i \leq m\end{array}\right.$
Define $f: E \rightarrow\{2,4,6 \ldots . .6 \mathrm{~m}\}$ as follows
$\mathrm{f}\left(\mathrm{e}_{\mathrm{i} 1}\right)=\left\{\begin{array}{cc}4 m-4 i+2 & 1 \leq i \leq(m-1) / 2 \\ 6 m-4 i+2 & \frac{m+1}{2} \leq i \leq m\end{array}\right.$
$\mathrm{f}\left(\mathrm{e}_{\mathrm{i} 2}\right)=2 \mathrm{i}, \mathrm{i}=1,2 \ldots \ldots \ldots \mathrm{~m}$
$\mathrm{f}\left(\mathrm{e}_{\mathrm{i} 3}\right)=\left\{\begin{array}{cc}5 m+2 i+1 & 1 \leq i \leq(m-1) / 2 \\ 3 m+2 i+1 & \frac{m+1}{2} \leq i \leq m\end{array}\right.$
It is easily verified that f is an odd vertex labeling of m C_{3} with $\mathrm{k}=9 \mathrm{~m}+2$

4. SUNS

An n-sun is a cycle C_{n} with an edge terminating in a vertex of degree 1 attached to each vertex.

Theorem : 4.1

All n-suns are not odd vertex magic labeling

Proof:

All suns 2 n vertices and 2 n edges.
For any odd vertex magic labeling $\mathbf{f}, \mathrm{f}(\mathrm{u})+\sum \mathrm{f}(\mathrm{uv})=\mathrm{k}$ $\forall u \in V . f(u)$ is odd and each $f(u v)$ is even. Therefore k is odd.

Then by theorem $2.1 \mathrm{k}=1+4 \mathrm{n}+2 \mathrm{n}+1=6 \mathrm{n}+2$ is even for any n
Whish is a contradiction to k is odd.
Therefore all n -suns are not odd vertex magic labeling

5. Kite

An (n, t)-kite consists of a cycle of length n with a t-edge path (the tail) attached to one vertex.

Theorem : 5.1

An kite $(3, t)$ is an odd vertex magic labeling iff t is even

Proof:

Assume that kite $(3, \mathrm{t})$ is an odd super vertex magic labeling

$$
\mathrm{n}=\mathrm{t}+3
$$

$$
\mathrm{m}=\mathrm{t}+3
$$

Then by theorem $2.1 \mathrm{k}=1+(2 \mathrm{t}+6)+(\mathrm{t}+3)+1=3 \mathrm{t}+11$
To prove that t is even
Suppose that t is odd
$K=3 t+11$ is even. In particular if u is a pendent vertex
of kite $(3, t)$, then $f(u)+f(u v)=k$, which is a
contradiction. Since $f(u)$ is odd and $f(u v)$ is even.
Therefore t is even
Converse Assume that t is even
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i}-1, \quad 1 \leq \mathrm{i} \leq \mathrm{t}+3$
$f\left(e_{i}\right)=i$ if i is even, $i \leq t$
$f\left(e_{t+2}\right)=2 t+6$
$f\left(e_{i}\right)=i+t+5$, if i is odd, $\mathrm{i} \leq t-1$
$f\left(e_{t+1}\right)=t+2$
$f\left(e_{t+3}\right)=t+4$

Example :

REFERENCES

1. V. Swaminathan P. Jeyanthi Super vertex magic labeling Indian j.pure appl .math.,34(6) 935-939,June 2003.
2. W D. Wallis ,Magic Graphs,Birkhauser,Basel,2013
3. Joseph A. Gallian, A Dynamic survey of Graph Labeling, The

Electronic Journal of Combinatories.

