
International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 6 – Nov - Dec 2019 

 

ISSN: 2249-2593                                http://www.ijcotjournal.org                                 Page 1 
 

Modelling A Data Sniffing Malware Detector 

For Apks 
Oyinloye Oghenerukevwe Elohor

#1
, Olatomide Awoyomi 

#2
 

Department of Computer Science, Ekiti State University, Nigeria 

 

Abstract — Smartphone has experienced rapid growth 
over the years. Android being the most popular 

operating system (according to 

https://gs.statcounter.com, 2019 constituting 76.24% 

of the statistics of the entire mobile usage) has 

witnessed a dramatic increase in malwares targeted 

at the platform as malware creators leverage on its 

popularity to exhibit malicious activity. As such, 

Android app marketplaces (googleplay and other 

third parties) remain at risk of hosting malicious 

apps that could be dangerous to the users. This calls 

for a need to pay attention to security issue in order 
to ensure that users can use their desired application 

without having a fallback on their privacy or any 

other means that attackers use hence, in this paper 

we present an effective approach to alleviate this 

problem based on machine learning approach using 

Linear Regression and Support Vector Machine 

(SVM) for classification. The models was trained 

with 70% and tested with 30% of the collected 

dataset and results of experiments are presented to 

demonstrate the effectiveness of the proposed 

approach nailing 85.7% accuracy. 
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I. INTRODUCTION 

Smart phones have been widely used in people’s 

daily life, such as online banking, automated home 

control, and entertainment. Due to the mobility and 

ever expanding capabilities, the use of smart phones 

has experienced an exponential growth rate in recent 
years. It is estimated that 77.7% of all devices 

connected to the Internet will be smart phones in 

2019 (Hou et. al., 2016). Android, as an open source 

and customizable operating system for smart phones, 

is currently dominating the smart phone market by 

76.24%.  

However, due to its large market share and open 

source ecosystem of development, Android 

developers are not only producing legitimate Android 

applications (apps), but also hackers to disseminate 

malware (malicious software) that deliberately fulfills 
the harmful intent to the smart phone users. To 

protect legitimate users from the attacks of Android 

malware, currently, the major defense is mobile 

security products, such as Norton, Lookout and 

Comodo Mobile Security, which mainly use the 

signature-based method to recognize threats. 

However, hackers can easily use techniques, such as 

code obfuscation and repackaging, to evade the 
detection. The increasing sophistication of Android 

malware calls for new defensive techniques that are 

robust and capable of protecting users against novel 

threats. To be more resilient against the Android 

malware’s evasion tactics. 

The nature of Android apps makes it difficult to rely 

on standard, traditional, malware analysis systems as 

is.  

While Android apps are generally written in the Java 

programming language and executed on top of the 

Dalvik virtual machine (VM), native code execution 
is possible, for instance, via the Java Native Interface 

(JNI). This mixed execution model seems to suggest 

the need to reconstruct, and keep in sync, different 

semantics through virtual machine introspection 

(VMI) for both the OS and Dalvik views. More 

recently, Zhang et al. (2012) stressed this concept 

further in and pointed out that traditional system call 

analysis is ill-suited to characterize the behaviors of 

Android apps as it misses high-level Android-specific 

semantics and fails to reconstruct inter-process 

communications (IPC) and remote procedure call 
(RPC) interactions, which are essential to 

understanding Android application behaviors. In a 

significantly different line of reasoning from, we 

observed that system call invocations remains central 

to both low-level OS-specific and high-level 

Android-specific behaviors. However, a naive 

analysis of system calls would miss the rich semantic 

of Android-specific behaviors.  

This is where the novelty of our approach lies; our 

techniques will improve the android detection 

method by using machine learning approach we will 

train a model with Linear Regression and Support 
Vector Machine (SVM) for the classification and 

detection of malware from an application package to 

predict either it is clean or infected. 

II. RELATED WORKS 

Burguera et. al., (2011) proposed an approach to 

analyze the behavior of Android applications, 

providing a framework to distinguish between 

applications who, have the same name and version 

but behave differently aimed at detecting 

anomalously behaving applications, thus detecting 

malware in the form of trojan horses.  
Sato et. al., (2013) proposed a method for detecting 

Android malware by analyzing only the manifest files. 

Their method runs on a low cost analysis using only 

the manifest files to detect malware.  
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Yerima et. al., (2014) proposed a machine learning 

based zero-day Android malware detector. Their 

approach leveraged the strengths of supervised 

learning algorithms (a function-based, tree-based, 

probabilistic, and two rule based algorithms) to 

produce a single classification verdict for new 
applications and has extensive empirical evaluation 

of the approach by means of real malware samples 

and benign applications, demonstrating its real-world 

applicability and capacity. 

Narudin et. al., (2014) proposed an alternative 

solution to evaluating malware detection using the 

anomaly-based approach with machine learning 

classifiers. They implemented their anomaly 

detection with machine learning tools such as 

Random forest, J48, MLP (Multi-layer perceptron), 

Bayesian Net and KNN(K-nearest neighbours).  

Yerima et. al., (2015) investigated how the power of 
ensemble learning can be applied to improve Android 

malware detection.  

Pimentel (2015) proposed a method to detect known 

and unknown Android malware by using a machine 

learning ensemble method. To build the models, he 

extracted features from the Android .apk by getting 

the permissions and API calls. As a classifier he used 

Troika, an ensemble method that uses several 

classifiers to improve performance over a single 

classifier.  

Duc et. al,. (2015) introduced a method to evaluate 
the security level of Android applications based on 

their permission. The method, which is called PAMD: 

Permission analysis for Android malware detection, 

analyses the Android Manifest file by understanding 

the protection level of Android permission and 

investigating malicious characteristics.  

Kang et. al., (2015) proposed an Android malware 

detection and classification system based on static 

analysis by using serial number information from the 

certificate as a feature. Their method mainly checks a 

serial number, checks suspicious behavior of SMS 

hiding, detects the malicious system commands in the 
code, and analyzes the suspicious permission requests.  

Dimjaševic et. al., (2016) proposed a novel dynamic 

Android malware detection techniques based on 

tracking system calls, all of which they implemented 

as a free and open-source tool called MALINE. Their 

work was inspired by a similar approach proposed for 

desktop malware detection albeit they provide 

simpler feature encodings and an Android-specific 

tool flow. They analyzed how the quality of malware 

classifiers is affected across several dimensions, 

including the choice of an encoding of system calls 
into features, the relative sizes of benign and 

malicious data sets used in experiments, the choice of 

a classification algorithm, and the size and type of 

inputs that drive a dynamic analysis.  

Qian et. al., (2016) analyzed the Android applications 

accurately and comprehensively based on combining 

static and dynamic method to reveal the malicious 

behaviors of applications leaking user’s privacy data. 

They use some tools such as Eclipse, JDK6, JRE6, 

Android SDK and Python2.7 will be installed. APK 

static decompiler and permissions filtering module 

were implemented with Java. The method is  to insert 

some monitoring Smali byte code, and the 

performance influence can be ignored but the system 
is more time consumption. 

Liang et. al., (2016) developed an online malware 

detection tool named Droid Sentinel, which can 

detect and block background SMS messages and 

phone calls initiated by malware. Droid Sentinel 

sends an alarm to the user when background SMS 

messages, background phone calls, or premium SMS 

messages or phone calls are detected.  

Rahman et. al., (2017) Proposed a system Fairplay 

that will be able to detect and filter out fraudulent 

reviews and also Identify malware and fraud 

indicative feedback from the remaining reviews.. 
Chaba et. al., (2018) defined an approach that created 

a dataset using system call log information. Their 

method implements a dataset on three algorithms 

namely, Naive Bayes algorithm, Random Forest 

Algorithm and Stochastic Gradient Descent algorithm. 

The strength lies in the use of system call but there is 

limited code coverage. 

Karbab et. al., (2018) proposed MalDozer; an 

automatic Android malware detection and family 

attribution framework that relies on sequences 

classification using deep learning techniques. Their 
method involve the creation of a MalDozer by 

disassembly a classes.dex to produce the Dalvik VM 

assembly to formalize the assembly and keep the 

maximum raw information with minimum noise 

Huang et. al., (2019) examined the potential 

vulnerabilities of MLbased malware detectors in 

adversarial environments. In aid to improve detection 

effectiveness while they discovered that machine 

learning (ML) classifiers are vulnerable to adversarial 

examples. They designed the white-box, grey-box 

and black-box attack experiments. In white-box 

attack, the attacker has complete knowledge of the 
system, including training data, features, and ML 

models (i.e. DNN architecture and parameters). They 

conducted white-box & grey-box attacks to an 

MLbased malware detector with thorough 

evaluations.  

III. METHODOLOGY 

This chapter discusses the steps, concepts and the 

operations of which this project is planned upon. The 

credibility of findings and conclusions depend largely 

on the quality of the research design, data collection 

of application packages, data management, and data 
analysis.   

Therefore, this chapter is dedicated to the description 

of the methods and procedures done for 

implementation. The section is further broken down 

into two steps: 

 

i. The steps involved in the logical design of 
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creating our machine learning model 

which includes the following: 

 

 The concept of mathematically applying 

Linear Regression to find out the cause and 

effect relationship between the independent 
and dependent variables in our data. Where 

the slope of a linear regression given as 

 …. Equation 1 

becomes  …. 

Equation 2 

 

(emphasizing the independent variable) 

 

Figure 3.1: Linear Regression Slope 

 

Fig. 3.1 shows a simulated linear regression 

slope describing how the safest path line (in 

red) separates two sets of data upon training 

and classification. 
● The process of determining the cost function 

which will help us helps us to figure out the 

best possible values for  and  

which would provide the best fit line for the 

data points 

● The concept of applying Linear 

Regression’s Gradient Descent to help 

reduce the cost function or MSE (mean 

standard error). 

● Support Vector Machine’s data structure 

concept for holding features and labels 

during training. 

● The process of testing our model after 

training, as well as making new predictions. 
● The new predictions to test the model will 

be achieved with an Android application to 

show the performance rate of the learning 

model 

 

ii. The algorithms and methods needed to 

perform the steps in the logical design. 

● Guided by the above insight, we will write 

code to train a model that will be able to 

detect and classify android malware using 

linear regression along with some major 

support vector machine algorithms.  

● Note that our data are hundreds of 

downloaded application packages, including 

as much that have malwares in them. 
 

3.2 SYSTEM DESIGN  

3.2.1 System Architecture 

Our input data is a collection of independent 

variables under two specific labels namely: Infected 

and Clean. The proposed system will collect this data 

for both training and testing, as well as allow to make 

new predictions via an Android application. The 

figure below displays this methodology in the most 

abstract form.  

 

 
 

 

 

Figure 3.2.1.1: Logical diagram showing the 

architectural concept of the system. 

 

3.2.2 Architectural Description 

The architecture of the system, as abstractly shown in 

the above figure starts from the collection of data, 
until training and testing.  

The figure below however explains in a less abstract 

form the process of creating the machine learning 

model. 
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Figure 3.2.2.1: Diagram showing the process of 

creating our ML model 

 
 

In this phase, we’ll emphasize on the training model 

and algorithms to be used. 

Training Phase – we will train our model with a list 

of permissions in android application packages gotten 

from https://www.kaggle.com/ (the list will be 

highlighted in the next chapter), we will feed the 
model with permission often requested by a clean apk 

and an infected one in order to be able to make 

predictions when new apk is tested. 

Linear regression is a way to model the relationship 

between two variables, The equation of the slope 

formula. The equation has the form Y= a + bX, 

where Y is the dependent variable (that’s the variable 

that goes on the Y axis), X is the independent 

variable (i.e. it is plotted on the X axis), b is the slope 

of the line and a is the y-intercept. 

 

 ………... 

Equation 3 

 

 …………. 
Equation 4 

 

Simple linear regression is a type of regression 

analysis where the number of independent variables 

is one and there is a linear relationship between the 
independent(x) and dependent(y) variable.  

The straight line in fig 3.1 is referred to as the best fit 

straight line. Based on the given data points, we try to 

plot a line that models the points the best. The line 

can be modelled based on the linear equation shown 

below. 

 

   …………. Equation 5 

 

Whereas multiple linear regression is given as: 

 

 
    …………. 

Equation 6 

 

The motive of the linear regression algorithm is to 

find the best values for a_0 and a_1. Before moving 

on to the algorithm, let’s have a look at two important 

concepts for a better understand of linear regression. 

Cost Function in Linear regression 
The cost function helps us to figure out the best 

possible values for   and  which would 

provide the best fit line for the data points. Since we 

want the best values for   and , we convert 

this search problem into a minimization problem 

where we would like to minimize the error between 

the predicted value and the actual value. 

  

    …………. 
Equation 7 

 

    …………. 
Equation 8 

 
We choose the above function to minimize. The 

difference between the predicted values and ground 

truth measures the error difference. We square the 

error difference and sum over all data points and 

divide that value by the total number of data points. 

This provides the average squared error over all the 

data points. Therefore, this cost function is also 

known as the Mean Squared Error (MSE) function. 
Now, using this MSE function we are going to 

change the values of   and  such that the 

MSE value settles at the minima. 

Gradient Descent 

A very important concept in linear regression is the 
gradient descent. Gradient descent is a method of 

updating   and  to reduce the cost function 
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(MSE). We start with some values for   and 

 and then we change these values iteratively to 

reduce the cost. Gradient descent helps us on how to 
change the values. 

… 

Equation 9 

 

   …………. Equation 10 

 

 
Figure 3.2: Gradient descent of linear regression. 

Having had the thorough understanding of how the 
machine learning works, we will implement using 

Tensor flow. 

TensorFlow 

TensorFlow is a core open source library to help 

develop and train ML models. 

TensorFlow data is represented in the form of tensors. 

Now, Tensors are multidimensional arrays, an 

extension of two-dimensional tables (matrices) to 
data with higher dimension. We may now need to 

incorporate the concepts of the Scalar, Vector, and 

Matrix. 

 

A scalar is a number like 8, -6, 0.56, etc. 

A vector is a list of numbers (could be a row or a 

column) 

A matrix is an array of numbers (one or more rows 

and columns) 

The more general existence of tensors expresses the 

essential features of the scalar, vector, and matrix — 
making it sometimes very necessary to make use of 

tensors with orders that exceed two in both physical 

sciences and machine learning. 

 

In machine learning, vectors often represent the 

feature vectors, with their individual components 

specifying how important a particular feature is. Such 

feature could include a relative importance in how 

specific the malware file is, or the intensity of a set of 

malware expression, etc. 
 

In linear regression, there is always a need to list our 

data in x-y format (i.e. two columns of data—

independent and dependent variables). Hence, the 

feature inputs are sure to be stored as vectors. 

 

TensorFlow allow not only to build and train ML 

models easily with their intuitive high-level APIs like 

Keras with eager execution, which makes for 

immediate model iteration and easy debugging, but 

also with the help of the Tensorboard, allows us to be 

able to visualize our dataflow, our TensorFlow graph, 
and plot quantitative metrics about the execution of 

our graph. 

 

 
 

Figure 3.3: Sample diagram of the Tensorboard 

showing quantitative metric of a loss function 

 

IV. TEST AND RESULT 

The implementation of this project begins by defining 

firsthand, the data, the tools, frameworks and 

technologies used in executing the methodology. 

These include what tools were used, the processes, 

and their requirements. This chapter then shows the 

development process of the system, with an 

understanding of organizing, training and managing 

data for the system, followed by the interactive 

process between the user, the system, and its data. All 

of these are layered out in the different sections and 
sub-sections; the detailed design, experimental 

testing, result and discussion, documentation, and the 

entire operation of the system. 

 

TOOLS REQUIRED 

 TENSORFLOW 

 PYCHARM 

 ANDROID STUDIO 
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 PROGRAMMING LANGUAGES: Python, 

Java 

 A Computer with a minimum configuration 

of 4GB RAM, 2GHz processor’s speed 

Windows OS / MAC OS / LINUX OS 

 

4.3 SYSTEM OPERATION AND 

IMPLEMENTATION 

For our data, we’ll use a list of all the available 

Android permissions, which will be a result of our 

research production in ML and Android security. The 

data is obtained by a process that consisted to create a 

binary vector of permissions used for each 

application analyzed {1=used, 0=no used} — where 

the samples of malware/benign were divided by 

"Type"; 1 malware and 0 non-malware. 

 
We obtained a total of 324 android permissions such 

as: 

  

 android.permission. 
ACCESS_NETWORK_STATE - Allows 
applications to access information about 
networks. 

 

 android.permission.ACCESS_FINE_LOCATIO
N - Allows an app to access precise location 
from location sources such as GPS, cell 
towers, and Wi-Fi. 

 
● android.permission.READ_LOGS - Allows 

an application to read the low-level system 

log files. Log entries can contain the user's 

private information. 

 

● android.permission.INTERNET - Allows 

applications to open network sockets 

 

● android.permission.RECEIVE_DATA_ACT
IVITY_CHANGE 

 

● android.permission.RECEIVE_SMS - 

Allows an application to monitor incoming 

SMS messages, to record or perform 

processing on them. 

 

● android.permission.SEND_RESPOND_VIA

_MESSAGE - Allows an application (Phone) 

to send a request to other applications to 

handle the respond-via-message action 
during incoming calls. Not for use by third-

party applications 

 

● android.permission.SEND_SMS_NO_CON

FIRMATION - Allows an application to 

send SMS messages via the Messaging app 

with no user input or confirmation 

 

● android.permission.WRITE_SMS - Allows 

an application to write SMS messages. 

 

 android.permission.ACCESS_WIFI_STATE 

- Allows applications to access information 

about Wi-Fi networks 
 

Then, we load the list of permissions into a datasheet: 

 
Figure 4.1: Data table 

 

 

Where their types, noted by malware/benign were 

divided by "Type"; 1 malware and 0 non-malware: 

 
Figure 4.2: Data table showing TYPE as 1 or 0 

 

Using the datasheet, we load it into a CSV file in 

order to make it useable in training our model to be 

able to recognize the permission requested by a clean 

application package and an infected one by using 

python programming language to import the CSV file 

and using SVM feature in tensorflow to hold the label 

features in as vectors and pass into the model in form 

of an array. Following the trained pattern from the 

dataset, the model is able to recognize and predict 

when an application package is likely to be clean or 

infected at an instance of a new application package 
being fed in.  
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Below shows the epoch values by the difference of 

50’s and their training accuracy: 

 

 

Figure 4.3: The epoch values with intervals of 50 and 
their training accuracy 

 
Figure 4.4: Training accuracy leveled at 0.9515 

 

Figure 4.5: Test accuracy levels at 0.8571 

 
While our MSE (Mean Squared Error) levels at 

23.2856, our test accuracy levels at 0.8571. 

This proves that our model is good enough to be 

served. 

 

 
Figure 4.6: Test accuracy reads 85% showing the 

true target, the predicted target and the prediction 
accuracy 

 

V. CONCLUSIONS 

The system design of this project was tested on a 

number of unbiased users and the following 

objectives were achieved: 

A methodology has been implemented that is mildly 

capable of predicting which APKs are safe and which 

may contain malware. The learning process proved 

that this by correctly predicting the test data. And it 

was tested by a matter of how much it identifies the 
permissions in the manifest file, which is based on a 

levels of either malicious or not.  

 

LIMITATIONS 

The limitations of this system include its present 

inability to rightly discern other factors such as the 

malware family, as permission may not be the only 

factor to decide the presence of malware or not.  

 

RECOMMENDATIONS 

This project proves more advantageous as compared 
to other existing machine learning research work for 

sniffing malware in application packages, given its 

conceptual methodology. It therefore, would be 

optimistic to recommend that the new design be 

embraced and adopted. More so, future modification 

can be done to accommodate training of more rare 

and complex factors. 
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