
International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 6 – Nov - Dec 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 1

Modelling A Data Sniffing Malware Detector

For Apks
Oyinloye Oghenerukevwe Elohor

#1
, Olatomide Awoyomi

#2

Department of Computer Science, Ekiti State University, Nigeria

Abstract — Smartphone has experienced rapid growth
over the years. Android being the most popular

operating system (according to

https://gs.statcounter.com, 2019 constituting 76.24%

of the statistics of the entire mobile usage) has

witnessed a dramatic increase in malwares targeted

at the platform as malware creators leverage on its

popularity to exhibit malicious activity. As such,

Android app marketplaces (googleplay and other

third parties) remain at risk of hosting malicious

apps that could be dangerous to the users. This calls

for a need to pay attention to security issue in order
to ensure that users can use their desired application

without having a fallback on their privacy or any

other means that attackers use hence, in this paper

we present an effective approach to alleviate this

problem based on machine learning approach using

Linear Regression and Support Vector Machine

(SVM) for classification. The models was trained

with 70% and tested with 30% of the collected

dataset and results of experiments are presented to

demonstrate the effectiveness of the proposed

approach nailing 85.7% accuracy.

Keywords — Malware, Android, Machine Learning,

Linear Regression, Support Vector Machine (SVM)

I. INTRODUCTION

Smart phones have been widely used in people’s

daily life, such as online banking, automated home

control, and entertainment. Due to the mobility and

ever expanding capabilities, the use of smart phones

has experienced an exponential growth rate in recent
years. It is estimated that 77.7% of all devices

connected to the Internet will be smart phones in

2019 (Hou et. al., 2016). Android, as an open source

and customizable operating system for smart phones,

is currently dominating the smart phone market by

76.24%.

However, due to its large market share and open

source ecosystem of development, Android

developers are not only producing legitimate Android

applications (apps), but also hackers to disseminate

malware (malicious software) that deliberately fulfills
the harmful intent to the smart phone users. To

protect legitimate users from the attacks of Android

malware, currently, the major defense is mobile

security products, such as Norton, Lookout and

Comodo Mobile Security, which mainly use the

signature-based method to recognize threats.

However, hackers can easily use techniques, such as

code obfuscation and repackaging, to evade the
detection. The increasing sophistication of Android

malware calls for new defensive techniques that are

robust and capable of protecting users against novel

threats. To be more resilient against the Android

malware’s evasion tactics.

The nature of Android apps makes it difficult to rely

on standard, traditional, malware analysis systems as

is.

While Android apps are generally written in the Java

programming language and executed on top of the

Dalvik virtual machine (VM), native code execution
is possible, for instance, via the Java Native Interface

(JNI). This mixed execution model seems to suggest

the need to reconstruct, and keep in sync, different

semantics through virtual machine introspection

(VMI) for both the OS and Dalvik views. More

recently, Zhang et al. (2012) stressed this concept

further in and pointed out that traditional system call

analysis is ill-suited to characterize the behaviors of

Android apps as it misses high-level Android-specific

semantics and fails to reconstruct inter-process

communications (IPC) and remote procedure call
(RPC) interactions, which are essential to

understanding Android application behaviors. In a

significantly different line of reasoning from, we

observed that system call invocations remains central

to both low-level OS-specific and high-level

Android-specific behaviors. However, a naive

analysis of system calls would miss the rich semantic

of Android-specific behaviors.

This is where the novelty of our approach lies; our

techniques will improve the android detection

method by using machine learning approach we will

train a model with Linear Regression and Support
Vector Machine (SVM) for the classification and

detection of malware from an application package to

predict either it is clean or infected.

II. RELATED WORKS

Burguera et. al., (2011) proposed an approach to

analyze the behavior of Android applications,

providing a framework to distinguish between

applications who, have the same name and version

but behave differently aimed at detecting

anomalously behaving applications, thus detecting

malware in the form of trojan horses.
Sato et. al., (2013) proposed a method for detecting

Android malware by analyzing only the manifest files.

Their method runs on a low cost analysis using only

the manifest files to detect malware.

http://www.ijcotjournal.org/

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 6 – Nov - Dec 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 2

Yerima et. al., (2014) proposed a machine learning

based zero-day Android malware detector. Their

approach leveraged the strengths of supervised

learning algorithms (a function-based, tree-based,

probabilistic, and two rule based algorithms) to

produce a single classification verdict for new
applications and has extensive empirical evaluation

of the approach by means of real malware samples

and benign applications, demonstrating its real-world

applicability and capacity.

Narudin et. al., (2014) proposed an alternative

solution to evaluating malware detection using the

anomaly-based approach with machine learning

classifiers. They implemented their anomaly

detection with machine learning tools such as

Random forest, J48, MLP (Multi-layer perceptron),

Bayesian Net and KNN(K-nearest neighbours).

Yerima et. al., (2015) investigated how the power of
ensemble learning can be applied to improve Android

malware detection.

Pimentel (2015) proposed a method to detect known

and unknown Android malware by using a machine

learning ensemble method. To build the models, he

extracted features from the Android .apk by getting

the permissions and API calls. As a classifier he used

Troika, an ensemble method that uses several

classifiers to improve performance over a single

classifier.

Duc et. al,. (2015) introduced a method to evaluate
the security level of Android applications based on

their permission. The method, which is called PAMD:

Permission analysis for Android malware detection,

analyses the Android Manifest file by understanding

the protection level of Android permission and

investigating malicious characteristics.

Kang et. al., (2015) proposed an Android malware

detection and classification system based on static

analysis by using serial number information from the

certificate as a feature. Their method mainly checks a

serial number, checks suspicious behavior of SMS

hiding, detects the malicious system commands in the
code, and analyzes the suspicious permission requests.

Dimjaševic et. al., (2016) proposed a novel dynamic

Android malware detection techniques based on

tracking system calls, all of which they implemented

as a free and open-source tool called MALINE. Their

work was inspired by a similar approach proposed for

desktop malware detection albeit they provide

simpler feature encodings and an Android-specific

tool flow. They analyzed how the quality of malware

classifiers is affected across several dimensions,

including the choice of an encoding of system calls
into features, the relative sizes of benign and

malicious data sets used in experiments, the choice of

a classification algorithm, and the size and type of

inputs that drive a dynamic analysis.

Qian et. al., (2016) analyzed the Android applications

accurately and comprehensively based on combining

static and dynamic method to reveal the malicious

behaviors of applications leaking user’s privacy data.

They use some tools such as Eclipse, JDK6, JRE6,

Android SDK and Python2.7 will be installed. APK

static decompiler and permissions filtering module

were implemented with Java. The method is to insert

some monitoring Smali byte code, and the

performance influence can be ignored but the system
is more time consumption.

Liang et. al., (2016) developed an online malware

detection tool named Droid Sentinel, which can

detect and block background SMS messages and

phone calls initiated by malware. Droid Sentinel

sends an alarm to the user when background SMS

messages, background phone calls, or premium SMS

messages or phone calls are detected.

Rahman et. al., (2017) Proposed a system Fairplay

that will be able to detect and filter out fraudulent

reviews and also Identify malware and fraud

indicative feedback from the remaining reviews..
Chaba et. al., (2018) defined an approach that created

a dataset using system call log information. Their

method implements a dataset on three algorithms

namely, Naive Bayes algorithm, Random Forest

Algorithm and Stochastic Gradient Descent algorithm.

The strength lies in the use of system call but there is

limited code coverage.

Karbab et. al., (2018) proposed MalDozer; an

automatic Android malware detection and family

attribution framework that relies on sequences

classification using deep learning techniques. Their
method involve the creation of a MalDozer by

disassembly a classes.dex to produce the Dalvik VM

assembly to formalize the assembly and keep the

maximum raw information with minimum noise

Huang et. al., (2019) examined the potential

vulnerabilities of MLbased malware detectors in

adversarial environments. In aid to improve detection

effectiveness while they discovered that machine

learning (ML) classifiers are vulnerable to adversarial

examples. They designed the white-box, grey-box

and black-box attack experiments. In white-box

attack, the attacker has complete knowledge of the
system, including training data, features, and ML

models (i.e. DNN architecture and parameters). They

conducted white-box & grey-box attacks to an

MLbased malware detector with thorough

evaluations.

III. METHODOLOGY

This chapter discusses the steps, concepts and the

operations of which this project is planned upon. The

credibility of findings and conclusions depend largely

on the quality of the research design, data collection

of application packages, data management, and data
analysis.

Therefore, this chapter is dedicated to the description

of the methods and procedures done for

implementation. The section is further broken down

into two steps:

i. The steps involved in the logical design of

http://www.ijcotjournal.org/

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 6 – Nov - Dec 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 3

creating our machine learning model

which includes the following:

 The concept of mathematically applying

Linear Regression to find out the cause and

effect relationship between the independent
and dependent variables in our data. Where

the slope of a linear regression given as

 …. Equation 1

becomes ….

Equation 2

(emphasizing the independent variable)

Figure 3.1: Linear Regression Slope

Fig. 3.1 shows a simulated linear regression

slope describing how the safest path line (in

red) separates two sets of data upon training

and classification.
● The process of determining the cost function

which will help us helps us to figure out the

best possible values for and

which would provide the best fit line for the

data points

● The concept of applying Linear

Regression’s Gradient Descent to help

reduce the cost function or MSE (mean

standard error).

● Support Vector Machine’s data structure

concept for holding features and labels

during training.

● The process of testing our model after

training, as well as making new predictions.
● The new predictions to test the model will

be achieved with an Android application to

show the performance rate of the learning

model

ii. The algorithms and methods needed to

perform the steps in the logical design.

● Guided by the above insight, we will write

code to train a model that will be able to

detect and classify android malware using

linear regression along with some major

support vector machine algorithms.

● Note that our data are hundreds of

downloaded application packages, including

as much that have malwares in them.

3.2 SYSTEM DESIGN

3.2.1 System Architecture

Our input data is a collection of independent

variables under two specific labels namely: Infected

and Clean. The proposed system will collect this data

for both training and testing, as well as allow to make

new predictions via an Android application. The

figure below displays this methodology in the most

abstract form.

Figure 3.2.1.1: Logical diagram showing the

architectural concept of the system.

3.2.2 Architectural Description

The architecture of the system, as abstractly shown in

the above figure starts from the collection of data,
until training and testing.

The figure below however explains in a less abstract

form the process of creating the machine learning

model.

http://www.ijcotjournal.org/

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 6 – Nov - Dec 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 4

Figure 3.2.2.1: Diagram showing the process of

creating our ML model

In this phase, we’ll emphasize on the training model

and algorithms to be used.

Training Phase – we will train our model with a list

of permissions in android application packages gotten

from https://www.kaggle.com/ (the list will be

highlighted in the next chapter), we will feed the
model with permission often requested by a clean apk

and an infected one in order to be able to make

predictions when new apk is tested.

Linear regression is a way to model the relationship

between two variables, The equation of the slope

formula. The equation has the form Y= a + bX,

where Y is the dependent variable (that’s the variable

that goes on the Y axis), X is the independent

variable (i.e. it is plotted on the X axis), b is the slope

of the line and a is the y-intercept.

 ………...

Equation 3

 ………….
Equation 4

Simple linear regression is a type of regression

analysis where the number of independent variables

is one and there is a linear relationship between the
independent(x) and dependent(y) variable.

The straight line in fig 3.1 is referred to as the best fit

straight line. Based on the given data points, we try to

plot a line that models the points the best. The line

can be modelled based on the linear equation shown

below.

 …………. Equation 5

Whereas multiple linear regression is given as:

 ………….

Equation 6

The motive of the linear regression algorithm is to

find the best values for a_0 and a_1. Before moving

on to the algorithm, let’s have a look at two important

concepts for a better understand of linear regression.

Cost Function in Linear regression
The cost function helps us to figure out the best

possible values for and which would

provide the best fit line for the data points. Since we

want the best values for and , we convert

this search problem into a minimization problem

where we would like to minimize the error between

the predicted value and the actual value.

 ………….
Equation 7

 ………….
Equation 8

We choose the above function to minimize. The

difference between the predicted values and ground

truth measures the error difference. We square the

error difference and sum over all data points and

divide that value by the total number of data points.

This provides the average squared error over all the

data points. Therefore, this cost function is also

known as the Mean Squared Error (MSE) function.
Now, using this MSE function we are going to

change the values of and such that the

MSE value settles at the minima.

Gradient Descent

A very important concept in linear regression is the
gradient descent. Gradient descent is a method of

updating and to reduce the cost function

http://www.ijcotjournal.org/

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 6 – Nov - Dec 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 5

(MSE). We start with some values for and

 and then we change these values iteratively to

reduce the cost. Gradient descent helps us on how to
change the values.

…

Equation 9

 …………. Equation 10

Figure 3.2: Gradient descent of linear regression.

Having had the thorough understanding of how the
machine learning works, we will implement using

Tensor flow.

TensorFlow

TensorFlow is a core open source library to help

develop and train ML models.

TensorFlow data is represented in the form of tensors.

Now, Tensors are multidimensional arrays, an

extension of two-dimensional tables (matrices) to
data with higher dimension. We may now need to

incorporate the concepts of the Scalar, Vector, and

Matrix.

A scalar is a number like 8, -6, 0.56, etc.

A vector is a list of numbers (could be a row or a

column)

A matrix is an array of numbers (one or more rows

and columns)

The more general existence of tensors expresses the

essential features of the scalar, vector, and matrix —
making it sometimes very necessary to make use of

tensors with orders that exceed two in both physical

sciences and machine learning.

In machine learning, vectors often represent the

feature vectors, with their individual components

specifying how important a particular feature is. Such

feature could include a relative importance in how

specific the malware file is, or the intensity of a set of

malware expression, etc.

In linear regression, there is always a need to list our

data in x-y format (i.e. two columns of data—

independent and dependent variables). Hence, the

feature inputs are sure to be stored as vectors.

TensorFlow allow not only to build and train ML

models easily with their intuitive high-level APIs like

Keras with eager execution, which makes for

immediate model iteration and easy debugging, but

also with the help of the Tensorboard, allows us to be

able to visualize our dataflow, our TensorFlow graph,
and plot quantitative metrics about the execution of

our graph.

Figure 3.3: Sample diagram of the Tensorboard

showing quantitative metric of a loss function

IV. TEST AND RESULT

The implementation of this project begins by defining

firsthand, the data, the tools, frameworks and

technologies used in executing the methodology.

These include what tools were used, the processes,

and their requirements. This chapter then shows the

development process of the system, with an

understanding of organizing, training and managing

data for the system, followed by the interactive

process between the user, the system, and its data. All

of these are layered out in the different sections and
sub-sections; the detailed design, experimental

testing, result and discussion, documentation, and the

entire operation of the system.

TOOLS REQUIRED

 TENSORFLOW

 PYCHARM

 ANDROID STUDIO

http://www.ijcotjournal.org/

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 6 – Nov - Dec 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 6

 PROGRAMMING LANGUAGES: Python,

Java

 A Computer with a minimum configuration

of 4GB RAM, 2GHz processor’s speed

Windows OS / MAC OS / LINUX OS

4.3 SYSTEM OPERATION AND

IMPLEMENTATION

For our data, we’ll use a list of all the available

Android permissions, which will be a result of our

research production in ML and Android security. The

data is obtained by a process that consisted to create a

binary vector of permissions used for each

application analyzed {1=used, 0=no used} — where

the samples of malware/benign were divided by

"Type"; 1 malware and 0 non-malware.

We obtained a total of 324 android permissions such

as:

 android.permission.
ACCESS_NETWORK_STATE - Allows
applications to access information about
networks.

 android.permission.ACCESS_FINE_LOCATIO
N - Allows an app to access precise location
from location sources such as GPS, cell
towers, and Wi-Fi.

● android.permission.READ_LOGS - Allows

an application to read the low-level system

log files. Log entries can contain the user's

private information.

● android.permission.INTERNET - Allows

applications to open network sockets

● android.permission.RECEIVE_DATA_ACT
IVITY_CHANGE

● android.permission.RECEIVE_SMS -

Allows an application to monitor incoming

SMS messages, to record or perform

processing on them.

● android.permission.SEND_RESPOND_VIA

_MESSAGE - Allows an application (Phone)

to send a request to other applications to

handle the respond-via-message action
during incoming calls. Not for use by third-

party applications

● android.permission.SEND_SMS_NO_CON

FIRMATION - Allows an application to

send SMS messages via the Messaging app

with no user input or confirmation

● android.permission.WRITE_SMS - Allows

an application to write SMS messages.

 android.permission.ACCESS_WIFI_STATE

- Allows applications to access information

about Wi-Fi networks

Then, we load the list of permissions into a datasheet:

Figure 4.1: Data table

Where their types, noted by malware/benign were

divided by "Type"; 1 malware and 0 non-malware:

Figure 4.2: Data table showing TYPE as 1 or 0

Using the datasheet, we load it into a CSV file in

order to make it useable in training our model to be

able to recognize the permission requested by a clean

application package and an infected one by using

python programming language to import the CSV file

and using SVM feature in tensorflow to hold the label

features in as vectors and pass into the model in form

of an array. Following the trained pattern from the

dataset, the model is able to recognize and predict

when an application package is likely to be clean or

infected at an instance of a new application package
being fed in.

http://www.ijcotjournal.org/

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 6 – Nov - Dec 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 7

Below shows the epoch values by the difference of

50’s and their training accuracy:

Figure 4.3: The epoch values with intervals of 50 and
their training accuracy

Figure 4.4: Training accuracy leveled at 0.9515

Figure 4.5: Test accuracy levels at 0.8571

While our MSE (Mean Squared Error) levels at

23.2856, our test accuracy levels at 0.8571.

This proves that our model is good enough to be

served.

Figure 4.6: Test accuracy reads 85% showing the

true target, the predicted target and the prediction
accuracy

V. CONCLUSIONS

The system design of this project was tested on a

number of unbiased users and the following

objectives were achieved:

A methodology has been implemented that is mildly

capable of predicting which APKs are safe and which

may contain malware. The learning process proved

that this by correctly predicting the test data. And it

was tested by a matter of how much it identifies the
permissions in the manifest file, which is based on a

levels of either malicious or not.

LIMITATIONS

The limitations of this system include its present

inability to rightly discern other factors such as the

malware family, as permission may not be the only

factor to decide the presence of malware or not.

RECOMMENDATIONS

This project proves more advantageous as compared
to other existing machine learning research work for

sniffing malware in application packages, given its

conceptual methodology. It therefore, would be

optimistic to recommend that the new design be

embraced and adopted. More so, future modification

can be done to accommodate training of more rare

and complex factors.

http://www.ijcotjournal.org/

International Journal of Computer & Organization Trends (IJCOT) – Volume 9 Issue 6 – Nov - Dec 2019

ISSN: 2249-2593 http://www.ijcotjournal.org Page 8

REFERENCES

[1] Alain Pimentel (2015). Detecting android malware by using

a machine learning ensemble method.

https://pdfs.semanticscholar.org/9923/097a3bf70c0642690a

c1fd9eb245d367007d.pdf

[2] ElMouatez Billah Karbab, Mourad Debbabi, Abdelouahid

Derhab and Djedjiga Mouheb (2018) MalDozer: Automatic

framework for android malware detection using deep

learning. Digital Investigation 24 (2018) S48 - S59

[3] Fairuz Amalina Narudin, Ali Feizollah, Nor Badrul Anuar

and Abdullah Gani (2014). Evaluation of machine learning

classifiers for mobile malware detection.

https://umexpert.um.edu.my/file/publication/00001293_118

859.pdf

[4] Hyunjae Kang, Jae-wook Jang, Aziz Mohaisen and Huy

Kang Kim (2015). Detecting and classifying android

malware using static analysis along with creator

information. International Journal of Distributed Sensor

Networks Volume 2015, Article ID 479174

[5] Iker Burguera, Urko Zurutuza and Simin Nadjm-Tehrani

(2011). Behavior-based malware detection system for

android.

https://www.researchgate.net/publication/245022829_Crow

droid_Behavior-

Based_Malware_Detection_System_for_Android

[6] Mahmudur Rahman, Mizanur Rahman, Bogdan Carbunar,

Duen Horng Chau (2017). FairPlay: Fraud and Malware

Detection in Google Play.

https://www.researchgate.net/publication/313683480_Searc

h_Rank_Fraud_and_Malware_Detection_in_Google_Play

[7] Marko Dimjaševic, Simone Atzeni, Zvonimir Rakamaric

and Ivo Ugrina (2016). Evaluation of android malware

detection based on system calls.

https://dimjasevic.net/marko/wp-content/papercite-

data/pdf/iwspa2016-daur.pdf

[8] Nguyen Viet Duc, Pham Thanh Giang and Pham Minh V

(2015). Permission analysis for android malware detection.

https://www.researchgate.net/publication/296704790_Permi

ssion_Analysis_for_Android_Malware_Detection

[9] Quan Qian, Jing Cai, Mengbo Xie and Rui Zhan (2016).

Malicious Behavior Analysis For Android Application.

International Journal of Network Security, Vol.18 No.1,

PP.182-192, Jan. 2016

[10] Ryo Sato, Daiki Chiba and Shigeki Goto (2013). Detecting

Android Malware By Analyzing Manifest Files

https://www.researchgate.net/publication/272778915_Detec

ting_Android_Malware_by_Analyzing_Manifest_Files

[11] Sanya Chaba, Rahul Kumar, Rohan Pant, Mayank Dave

(2018). Malware Detection Approach For Android Systems

Using System Call Logs

https://arxiv.org/ftp/arxiv/papers/1709/1709.08805.pdf

[12] Shuang Liang, Xiaojiang Du, Chiu C. Tan, Wei Yu (2016).

An effective online scheme for detecting android malware.

International Journal of Distributed Sensor Networks

Volume 2015, Article ID 479174

[13] Suleiman Y. Yerima, Sakir Sezer and Igor Muttik

(2014).0020Android Malware Detection Using Parallel

Machine Learning Classifiers. 8th International Conference

on Next Generation Mobile Applications, Services and

Technologies, (NGMAST 2014), 10-14 Sept., 2014

[14] Suleiman Y. Yerima, Sakir Sezer and Igor Muttik (2015).

High Accuracy Android Malware Detection Using

Ensemble Learning.

https://www.researchgate.net/publication/276158407_High

_Accuracy_Android_Malware_Detection_Using_Ensemble

_Learning

[15] Yonghong Huang, Utkarsh Verma, Celeste Fralick, Gabriel

Infante-Lopez, Brajesh Kumar and Carl Woodward (2019).

Malware Evasion Attack and Defense.

https://arxiv.org/pdf/1904.05747

[16] https://gs.statcounter.com/os-market-

share/mobile/worldwide

http://www.ijcotjournal.org/

