Comparative study on MDMA method with OFSTF method in Transportation Problem

A. Amaravathy ${ }^{1 *}$, V.Seerengasamy ${ }^{2}$ and S. Vimala ${ }^{3}$
${ }^{1 *}$ Research Scholar (MAT15P383), Dept. of Mathematics, Mother Teresa Women's University, Kodaikanal, TN, India.
${ }^{2}$ Professor, Department of Mathematics, PSNA College of Engineering and Technology, Dindigul, TN, India.
${ }^{3}$ Assistant Professor, Department of Mathematics, Mother Teresa Women's University, Kodaikanal, TN, India.

Abstract

In this paper comparative study of MDMA method and OFSTF method is discussed concluding this with MDMA is better than OFSTF for proposed pay off matrix

Keywords: Assignment problem, Transportation problem, Degeneracy, Pay Off Matrix (POM), Quadrants.

I. INTRODUCTION

The transportation problem constitutes an important part of logistics management.

In addition, logistics problems without shipment of commodities may be formulated as transportation problems [1]. For instance, the decision problem of minimizing dead kilometers (Raghavendra and Maharaja, 1987) [11] can be formulated as a transportation problem (Vasudevanet al.,1993; Sridhar an, 1991) [18],[20]. The problem is important in urban transport undertakings, as dead kilometers mean additional losses. It is also possible to approximate certain additional linear programming problems by using a transportation formulation (e.g., see Dose and Morrison, 1996) [4].

Various methods are available to solve the transportation problem to obtain an optimal solution [16]. Typical/well-known transportation methods include the stepping stone method [2] (Charnes and Cooper, 1954), the modified distribution method (Dantzig, 1963), the modified stepping-stone method (Shih, 1987), the simplex-type algorithm (Arsham and Kahn, 1989) and the dual-matrix approach (Ji and Chu, 2002). Glover et al. (1974) presented a detailed computational comparison of basic solution algorithms for solving the transportation problems [6],[18]. Shafaat and Goyal (1988) proposed a systematic approach for handling the situation of degeneracy encountered in the stepping stone method [7][8][9],[14].

A detailed literature review on the basic solution methods is not presented. All the optimal solution algorithms for solving transportation problems need an initial basic feasible solution to obtain the optimal solution[3],[19]. There are various heuristic methods available to get an initial basic
feasible solution, such as "North West Corner" rule,
"Best Cell Method," "VAM - Vogel's Approximation Method"[17] (Reinfeld and Vogel, 1958), Shimshaket a/.'s version of VAM (Shimshaket al., 1981)[13], Coyal's version of VAM (Goyal, 1984), Ramakrishnan's version of VAM (Ramakrishnan, 1988) etc [12]. Further, Kirca and Satir (1990) developed a heuristic, called TOM (Total Opportunity-cost Method), for obtaining an initial basic feasible solution for the transportation problem [10]. Gass (1990) detailed the practical issues for solving transportation problems [5] and offered comments on various aspects of transportation problem methodologies along with discussions on the computational results, by the respective researchers.

Recently, Sharma and Sharma (2000) [15] proposed a new heuristic approach for getting good starting solutions for dual based approaches used for solving transportation problems. Even in the above method needs more iteration to arrive optimal solution. Hence the proposed method helps to get directly optimal solution with less iteration number of the proposed method [21] is given below.

II.Transport Problem through OFSTF (Origin, First, Second, Third, and Fourth quadrants) Method

We now introduce a new method called the Transport Problem through OFSTF method for finding an feasible solution to a transportation problem. The OFSTF method proceeds as follows.
Step 1
Construct the Transportation Table (TT) for the given Pay Off Matrix (POM).
Step 2
Choose the maximum and minimum element in the constructed Transportation Table (TT).
Step 3
Find the difference between the maximum and minimum element from Step 2.
If the Resultant Element (RE) matched with anyone of the element in the POM, then find the difference between each element in the Transportation Table (TT) with the Resultant Element (RE). That is,

Maximum Element - Minimum Element $=$ R.E

If R.E $=$ an element in TT
Every element in TT - R.E.

If $\mathbf{R} . \mathrm{E} \neq$ an element in TT

select next minimum element in TT and repeat the Step 2.3.1..
Repeat the process until the condition satisfied.
Step 4
In the Reduced POM, there will be at least one zero in the TT, select a particular zero based on the maximum deviation element from the given zeros.
Step 5
Case 1
Fix zero as origin, and find the maximum deviated element from the selected zero.
Case 2
Fix zero as origin, and find the maximum deviated element in the first quadrant $(+,+)$ from the selected zero.
Case 3
Fix zero as origin, and find the maximum deviated element in the second quadrant $(-,+)$ from the selected zero
Case 4
Fix zero as origin, and find the maximum deviated element in the Third quadrant (-, -) from the selected zero.
Case 5
Fix zero as origin, and find the maximum deviated element in the fourth quadrant $(+,-)$ from the selected zero.
Step 6
Compare and fulfill the demand of the maximum deviated element with the supply in the TT.
Step 7
Calculate the total cost for each cases, the feasible solution is obtained in the origin area for all kind of transportation Problem.
Hence by observation for transportation problem, calculating the cost from origin will lead to a feasible solution through OFSTF from the following example.

III. Example

Consider the following cost minimizing transportation problems.

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	6	8	8	5	30
S_{2}	5	11	9	7	40
S_{3}	8	9	7	13	50
Demand	35	28	32	25	120

Origin

Step 1

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	6	8	8	5	30
S_{2}	5	11	9	7	40
S_{3}	8	9	7	13	50
Demand	35	28	32	25	120

Step 2

	D_{1}	D_{3}	D_{4}	Supply
S_{1}	6	8	$5 / 25$	30
S_{2}	5	9	7	12
S_{3}	8	7	13	50
Demand	35	32	25	92

Step 3

	D_{1}	D_{3}	Supply
S_{1}	6	8	5
S_{2}	$\frac{5}{12}$	9	12
S_{3}	8	7	50
Demand	$\frac{35}{23}$	32	67

Step 4

	D_{1}	D_{3}	Supply
S_{1}	6	8	5
S_{3}	8	7	50
Demand	23	32	55

Step 5

	D_{1}	D_{3}	Supply
S_{3}	8	7	50
Demand	18	32	50

Total Cost:-
$11 \times 28+28 \times 5+12 \times 5+6 \times 5+8 \times 18+32 \times 7$
$308+125+60+30+144+224=891$

First Quadrant (++)

Step 1

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	6	$\frac{8}{28}$	8	5	$\frac{30}{2}$
S_{2}	5	11	9	7	40
S_{3}	8	9	7	13	50
Demand	35	28	32	25	120

Step 2

	D_{1}	D_{3}	D_{4}	Supply
S_{1}	6	8	5	2
S_{2}	5	9	7	40
S_{3}	8	7	13	50
Demand	35	32	25	92

Step 3

	D_{1}	D_{3}	D_{4}	Supply
S_{2}	5	9	7	40
S_{3}	8	7	13	50
Demand	35	32	23	90

Step 4

	D_{3}	D_{4}	Supply
S_{2}	9	7	5
S_{3}	7	13	50
Demand	32	23	55

Step 5

	D_{3}	D_{4}	Supply
S_{3}	7	13	50
Demand	32	18	18

Total Cost:-
$7 \times 32+13 \times 18+5 \times 7+5 \times 35+5 \times 2+8 \times 28$
$224+234+35+175+10+224=902$

Second Quadrant (-- +)
Step 1

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	6	8	8	5	30
S_{2}	5	11	9	7	40
S_{3}	8	9	7	13	50
Demand	35	28	32	25	120

Step 2

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{2}	5	11	9	7	40
S_{3}	8	9	7	13	50
Demand	5	28	32	25	90

Step 3

	D_{2}	D_{3}	D_{4}	Supply
S_{2}	11	9	7	35
S_{3}	9	7	13	50
Demand	28	32	25	85

Step 4

	D_{2}	D_{3}	Supply
S_{2}	11	9	10
S_{3}	9	7	50
Demand	28	32	60

Step 5

	D_{2}	D_{3}	Supply
S_{3}	9	7	50
Demand	18	32	

Total Cost:-
$7 \times 32+9 \times 18+11 \times 10+25 \times 7+5 \times 5+6 \times 30$
$224+162+110+175+25+180=876$

Third Quadrant (+ --)
Step 1

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	6	8	8	5	30
S_{2}	5	11	9	7	40
S_{3}	8	9	7	13	50
Demand	35	28	32	25	120

Step 2

	D_{1}	D_{3}	D_{4}	Supply
S_{1}	6	8	5	30
S_{2}	$\frac{5}{12}$	9	7	12
S_{3}	8	7	13	50
Demand	$\frac{35}{23}$	32	25	92

Step 3

	D_{1}	D_{3}	D_{4}	Supply
S_{1}	6	8	5	30
S_{3}	8	7	13	50 23
Demand	23	32	25	80

Step 4

	D_{3}	D_{4}	Supply
S_{1}	8	5	30
S_{3}	7	13	27
Demand	$\frac{32}{5}$	25	57

Step 5

	D_{3}	D_{4}	Supply
S_{1}	8	5	30
Demand	5	25	30

Total Cost:-

$$
\begin{aligned}
& 5 \times 25+8 \times 5+7 \times 27+8 \times 23+5 \times 12+11 \times 28 \\
& 125+40+189+184+60+308=906
\end{aligned}
$$

Fourth Quadrant (-- --)

Step 1

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	6	8	8	5	30
S_{2}	5	11	9	7	40
S_{3}	8	9	7	13	50
Demand	35	28	32	25	120

Step 2

	D_{1}	D_{3}	D_{4}	Supply
S_{1}	6	8	$\frac{5}{25}$	30
S_{2}	5	9	7	12
S_{3}	8	7	13	50
Demand	35	32	25	92

Step 3

	D_{1}	D_{3}	Supply
S_{1}	6	8	5
S_{2}	5	9	12
S_{3}	8	7	50
Demand	35	32	67

Step 4

	D_{1}	Supply
S_{1}	6	5
S_{2}	5	12
S_{3}	8	12
Demand	18	18

Total Cost:-
$8 \times 18+5 \times 12+6 \times 5+7 \times 32+5 \times 25+11 \times 28$
$144+60+30+224+125+308=891$
MDMA Method

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
S_{1}	6	$8 / 5$	8	5	30
S_{2}	5	11	9	7	40
S_{3}	8	9	$7 / 8$	13	50
Demand	35	28	32	25	120

Step 1

	D_{1} S_{1}	D_{2}	D_{3}	D_{4}	Suppl y
S_{2}	$5 / 1$ 3	$8 / 13$	$8 / 1$ 3	$5 / 1$ 2	30 25
S_{3}	$8 / 1$ 3	$9 / 1$ 3	$7 / 1$ 3	40	
Deman d	35	28	$3 / 1$	1	50

Step 2

	D_{1}	D_{2}	D_{3}	Supply
S_{1}	$6 / 13$	$8 / 13$	$8 / 13$	5
S_{2}	$5 / 13$	$11 / 13$	$9 / 13$	40
S_{3}	$8 / 13$	$9 / 13$	$7 / 13$	50
Demand	35	28	32	95

	D_{1}	D_{2}	D_{3}	Supply
S_{1}	$6 / 11$	$8 / 11$	$8 / 11$	5
S_{2}	$5 / 11$ 35	1	$9 / 11$	40
S_{3}	$8 / 11$	$9 / 11$	$7 / 11$	50
Demand	35	28	32	95

Step 3

	D_{2}	D_{3}	Supply
S_{1}	$8 / 11$	$8 / 11$	5
S_{2}	1	$9 / 11$	5
S_{3}	$9 / 11$	$7 / 11$	50
Demand	28	32	60

	D_{2}	D_{3}	Supply
S_{1}	$8 / 9$	$8 / 9$	5
S_{2}	$11 / 9$	1	5
S_{3}	1	$7 / 9$	50
Demand	28	32	18

Step 4

	D_{2}	Supply
S_{1}	$8 / 9$	5
S_{2}	$11 / 9$	5
S_{3}	1	5
Demand	18	18

Total Cost:-
$8 \times 5+25 \times 5+5 \times 35+11 \times 5+9 \times 18+7 \times 32$

$$
40+125+175+55+162+224=781
$$

Comparative Study
Comparative Study on the same problem with other methods-OFSTF Method, MDMA Method, NORTH WEST CORNER Method has been reduced.

Origin	$: 891$	$\rightarrow 18 \%$
First Quadrand	$: 902$	$\rightarrow 16 \%$
Second Quadrand	$: 876$	$\rightarrow 18 \%$
Third Quadrand	$: 906$	$\rightarrow 16 \%$
Fourth Quadrand	$: 891$	$\rightarrow 17 \%$
MDMA Method	$: 781$	$\rightarrow 28 \%$
North West Corner Method $: 1076$		

IV.CONCLUSION AND FUTURE WORK

Thus the OFSTF method provides an feasible value of the objective function for the transportation problem. The proposed algorithm carries systematic procedure, and very easy to understand. It can be extended to
assignment problem and travelling salesman problems to get optimal solution. The proposed method is important tool for the decision makers when they are handling various types of logistic problems, to make the decision optimally and from the comparison MDMA leads the optimal solution other than all the methods.

ACKNOWLEDGEMENT

The authors would like to thank Dr. PonnammalNatarajan, Former director of Research, Anna University, Chennai, India. for her intuitive ideas and fruitful discussions with respect to the paper's contribution and support to complete this paper.

REFERENCES.

[1] Arsham, H and AB Kahn (1989). A simplex-type algorithm for general transportation problems: An alternative to Stepping-Stone. Journal of Operational Research Society, 40(6), 581-590
[2] Charnes, A and WW Cooper (1954). The Stepping-Stone method for explaining linear programming calculations in transportation problems. Management Science, 1(1), 49-69.
[3] Dantzig, GB (1963). Linear Programming an Extensions, Princeton, NJ: Princeton University Press.
[4] Dhose, ED and KR Morrison (1996). Using transportation solutions for a facility location problem. Computers and Industrial Engineering, 31(1/2), 63-66.
[5] Gass, SI (1990). On solving the transportation problem. Journal of Operational Research Society, 41(4), 291-297.
[6] Glover, F, D Karney, D Klingman and A Napier (1974). A computation study on start procedures, basis change criteria, and solution algorithms for transportation problems. Management Science, 20(5), 793-813.
[7] Goyal, SK (1984). Improving VAM for unbalanced transportation problems. Journal of Operational Research Society, 35(12), 1113-1114.
[8] Goyal, SK (1991). A note on a heuristic for obtaining an initial solution for the transportation problem. Journal of Operational Research Society, 42(9), 819-821.
[9] Ji, P and KF Ghu (2002). A dual-matrix approach to the transportation problem. Asia- Pacific Journal of Operations Research, 19(1), 35-45.
[10] Kirca, O and A Satir (1990). A heuristic for obtaining an initial solution for the transportation problem. Journal of Operational Research Society, 41(9), 865-871.
[11] Raghavendra, BG and M Mathirajan (1987). Optimal allocation of buses to depots - a case study. OPSEARCH, 24(4), 228-239.
[12] Ramakrishnan, GS (1988). An improvement to Goyal's modified VAM for the unbalanced transportation problem. Journal of Operational Research Society, 39(6), 609-610.
[13] Reinfeld, NV and WR Vogel (1958). Mathematical Programming. Englewood Gliffs, New Jersey: Prentice-Hall.
[14] Shafaat, A and SK Goyal (1988). Resolution of degeneracy in transportation problems. Journal of Operational Research Society, 39(4), 411-413.
[15] Shajma, RRK and KD Sharma (2000). A new dual based procedure for the transportation problem. European Journal of Operational Research, 122, 611-624.
[16] Shih, W (1987). Modified Stepping-Stone method as a teaching aid for capacitated transportation problems. Decision Sciences, 18, 662-676.
[17] Shimshak, DG, JA Kaslik and TD Barclay (1981). A modification of Vogel's approximation method through the use of heuristics. INEOR, 19, 259-263.
[18] Sridharan, R (1991). Allocation of buses to depots: a case study. Vikalpa, The Journal for Decision Makers, 16(2), 2732.
[19] Sudhakar. V. J, Arunsankar. N and Karpagam. T(2012)A New Approach for Finding an Optimal Solution for Transportation Problems, European Journal of Scientific researchISSN 1450-216X Vol. 68 No. 2 (2012), pp. 254-257.
[20] Vasudevan. J, E Malini and DJ Victor (1993). Fuel savings in bus transit using depotterminal bus allocation model. Journal of Transport Management, 17(7), 409-416.
[21] K. Thiagarajan, A. Amaravathy, S. Vimala, K. Saranya (2016). OFSTF with Non linear to Linear Equation Method - An Optimal Solution for Transportation Problem, Australian Journal of Basic and Applied Sciences, ISSN -1991-8178 Anna University-Annexure II, SI No. 2095.
[22] S.Vimala,K.Thiagarajan and A.Amaravathy(2016) OFSTF Method-An Optimal Solution for Transportation Problem ,the Indian journal of science and technology.(ACCEPTED FOR PUBLICATION).
[23] A. Amaravathy, K. Thiagarajan, S. Vimala MDMA Method- An Optimal Solution for Transportation Problem, preceding of ICETESM -2016

