A Study on Anti Fuzzy B Ideals in Homomorphism and Cartesian product on B-Algebras

S.Kailasavalli¹, C.Yamini²

Assistant professor, Department of Mathematics, PSNA College of Engineering and Technology Dindigul-624622, Tamil Nadu. India

Abstract

In this paper, anti fuzzy B-ideals and anti fuzzy B algebras concepts are introduced and proved some results Homomorphism and anti homomorphism functions are satisfied while applying the anti fuzzy B-ideal concept. Anti Fuzzy B-ideal is also applied in Cartesian product.

Keywords:

B-algebras, B-ideals, Fuzzy B-ideals, Anti fuzzy B ideals, Anti fuzzy B-algebras Homomorphism, Anti homomorphism, Cartesian product.

1. Introduction

After the introduction of fuzzy subsets by L.A. Zadeh [10], several researchers explored on the generalization of the notion of fuzzy subset.Y.B. Jun, E.H. Roh, and H.S. Kim [6] introduced a new notion, called a BH- algebra. J. Neggers and H.S. Kim [8] introduced a new notion, called a Balgebra which is related to several classes of algebras of interest such as BCH/BCI/BCKalgebras. J.R. Cho and H.S. Kim [2] discussed further relations between B-algebras and other topics, especially quasi-groups. Y.B. Jun etal [7] fuzzy field (normal) B-algebras and gave a characterization of a fuzzy B-algebras. Sun Shin Ahn and Keumseong Bang [11] gave discussed the fuzzy sub- algebra in B-algebra. C. Yamini and S. Kailasavalli introduced В ideals in Balgebras[12].R. Biswas introduced the concept of Anti fuzzy subgroup of a group [1]. Modifying his idea, in this paper we apply the idea of B-algebras. We introduce the notion of Anti fuzzy B-ideals of B-algebras.

2. Preliminaries

In this section we give some basic definitions and preliminaries of B algebras, B- ideals and fuzzy B- ideals.

Definition 2.1

A B- algebra is a non empty set X with a constant 0 and a binary operation "*" satisfying axioms:

- (i) x * x = 0
- (ii) x * 0 = x

(iii) $(x^*y) * z = x * (z * (0^*y))$, for all $x, y, z \in X$.

For brevity we also call X a B-algebra. In X we can define a binary relation " \leq " by x \leq y if and only if x * y = 0.

Definition 2.2

A non-empty subset I of a B-algebra X is called a subalgebra of X if $x * y \in I$ for any $x, y \in I$.

Definition 2.3

Let μ be a fuzzy set in a B-algebra. Then μ is called a fuzzy subalgebra of X if $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$.

Definition 2.4

A fuzzy subset μ of a B-algebra is called an anti fuzzy subalgebra of X if

 $\mu(x * y) \le \max\{\mu(x), \mu(y)\}$ for all $x, y \in X$.

Definition 2.5

A nonempty subset I of a B- algebra X is called a B-Ideal of X if it satisfies for x, y, $z \in X$.

(i) 0 ∈ I
(ii) (x * y) ∈ I and (z*x) ∈ I imply (y * z) ∈ I

Theorem: 2.6

If μ is an anti fuzzy subalgebra of a B-algebra X, then $\mu(0) \leq \mu(x)$ for any $x \in X$.

Proof:

Since
$$x * x = 0$$
 for any $x \in X$

Then $\mu(0) = \mu(x * x)$ $\leq \max\{\mu(x), \mu(x)\}\$ $= \mu(x)$ Hence $\mu(0) \leq \mu(x)$.

Definition: 2.7

Let μ be a fuzzy set of X. For a fixed t \in [0,1] the set $\mu^t = \{x \in X/\mu(x) \le t\}$ is called the lower level subset of μ .

Clearly $\mu^t \cup \mu_t = X$ for $t \in [0,1]$ if $t_1 < t_2$ then $\mu^{t_1} \subseteq \mu^{t_2}$.

Definition: 2.8

Let X be a B-algebra and μ be a fuzzy subalgebra of X. The subalgebras μ_t , t \in [0,1] and $t \leq \mu(0)$ is called a level subalgebra of μ .

Theorem: 2.9

A fuzzy set μ of a B-algebra X is an anti fuzzy subalgebra if for every t \in [0,1], μ ^t is either empty or a subalgebra of X.

Proof:

Assume that μ is an anti fuzzy subalgebra of X and $\mu^t \neq 0$ then for any $x, y \in \mu^t$, we have

$$\mu(\mathbf{x} * \mathbf{y}) \le \max\{\mu(\mathbf{x}), \mu(\mathbf{y})\} \le t.$$

Therefore $x * y \in \mu^t$. Hence μ^t is a subalgebra of X.

Conversely for any $x,y \in X$ denote by $t = \max\{\mu(x), \mu(y)\}$. Then by assumption μ^t is a subalgebra of X.

Which implies $x * y \in \mu^t$

Therefore $\mu(x * y) \le t = \max\{\mu(x), \mu(y)\}$

Hence μ is an anti fuzzy subalgebra of X.

Theorem: 2.10

Let μ be a fuzzy set of a B-algebra, X is an anti fuzzy sub algebra such that μ^t is a subalgebra for all t \in [0,1], $t \ge \mu(0)$. Then μ is an anti fuzzy sub algebra of X.

Proof:

Let $x,y \in X$ and let $\mu(x) = t_1$ and $\mu(y) = t_2$. Then $x \in \mu^{t_1}$ and $y \in \mu^{t_2}$. Assume that $t_1 \ge t_2$,

Then $\mu^{t_1} \supseteq \mu^{t_2}$ and so $y \in \mu^{t_1}$. Since μ^{t_1} is a sub algebra of X, we have $x * y \in \mu^{t_1}$. Thus

 $\mu(x * y) \le t_1 = \max\{\mu(x), \mu(y)\}.$

This completes the proof.

Theorem 2.11

Any subalgebra of a B-algebra X can be realized as a level sub algebra of some anti fuzzy subalgebra of X.

Proof:

Let μ be a subalgebra of a given B-algebra X and let μ be a fuzzy set in X defined by

$$\mu(x) = t \text{ if } x \in A$$

Where $t \in [0,1]$ is fixed. It is clear that $\mu^t = A$

Now we prove such defined μ is an anti fuzzy subalgebra of X.

Let $x, y \in X$ If $x, y \in A$ then $x * y \in A$

Hence $\mu(x) = \mu(y) = \mu(x * y) = t$ and $\mu(x * y) \le \max\{\mu(x), \mu(y)\}$

If x,y \notin A then $\mu(x) = \mu(y) = 0$ and $\mu(x * y) \le \max{\{\mu(x), \mu(y)\}} = 0.$

If at most one of x, $y \in A$, then at least one of $\mu(x)$ and $\mu(y)$ is equal to zero.

Therefore $\max\{\mu(x), \mu(y)\} = 0$ so that $\mu(x * y) \le 0$.

Which completes the proof.

Theorem: 2.12

Two level subalgebras μ^s , μ^t (s < t) of an anti fuzzy sub algebra are equal if there is no x \in X such that s $\leq \mu(x) <$ t.

Proof:

Let $\mu^s = \mu^t$ for some s < t. If there exist $x \in X$ $s \le \mu(x) < t$, then μ^t is a proper subset of μ^s ,

Which is a contradiction.

Conversely, Assume that there is no $x \in X$ such that $s \le \mu(x) < t$ If $x \in \mu^s$ then $\mu(x) \le s$

And $\mu(x) \leq t$ Since $\mu(x)$ does not lie between s and t. Thus $x \in \mu^t$. Which gives $\mu^s \subseteq \mu^t$

Also $\mu^t \subseteq \mu^s$. Therefore $\mu^s = \mu^t$.

3. B-ideals and antifuzzy B-ideals

Definition 3.1

Let (x, *, 0) be a B-algebra, a fuzzy subset μ in X is called a fuzzy B-Ideal of X if it satisfies the following conditions: for all x, y, $z \in X$.

(i)
$$\mu(0) \ge \mu(x)$$

(ii) $\mu(y * z) \ge \min\{\mu(x * y), \mu(z * x)\}.$

Definition 3.2

Let (x, *, 0) be a B-algebra, a fuzzy subset μ in X is called an antifuzzy B-Ideal of X if it satisfies the following conditions for all x, y, $z \in X$.

(i)
$$\mu(0) \le \mu(x)$$

(ii) $\mu(y * z) \le \max\{\mu(x * y), \mu(z * x)\}.$

Theorem: 3.3

Every anti fuzzy B-Ideal μ of B-algebra X is order preserving that is $y \le x$ then $\mu(y) \le \mu(x)$ for all $x, y \in X$.

Proof:

Let μ be an anti fuzzy B-Ideal of B-algebra X and let x, y ϵ X such that $y \le x$ then y * x = 0

$$\mu(y) = \mu(0 * y)$$

\$\le \max{\mu(x * 0), \mu(y * x)}

$$\leq \max\{\mu(x), \mu(0)\}$$

 $=\mu(x)$

Hence $\mu(y) \leq \mu(x)$.

Theorem: 3.4

Let μ be a fuzzy B-Ideal of a B-algebra X if μ^c is an anti fuzzy B-Ideal of X

Proof:

Let μ be a fuzzy B-Ideal of X and let x, y, z ϵ X then

- (i) $\mu^{c}(0) = 1 \mu(0) \le 1 \mu(x) = \mu^{c}(x)$ that is $\mu^{c}(0) \le \mu^{c}(x)$
- (ii) $\mu^{c}(y * z) = 1 \mu(y * z)$ $\leq 1 - \min\{\mu(x * y), \mu(z * x)\}$ $\leq 1 - \min\{1 - \mu^{c}(x * y), 1 - \mu^{c}(z * x)\}$ $= \max\{\mu^{c}(x * y), \mu^{c}(z * x)\}$

that is $\mu^{c}(y * z) \leq \max\{ \mu^{c}(x * y), \mu^{c}(z * x) \}$

Thus μ^c is an anti fuzzy B-Ideal of X .The converse also can be proved similarly.

4. Homomorphism and Anti Homomorphism of B-algebra

In this section we have discussed about anti fuzzy B-Ideals in B-algebra under homomorphism and some of its properties.

Definition: 4.1

Let (X, *, 0) and $(Y, \Delta, 0^{\circ})$ be B-algebras. A mapping $f: X \rightarrow Y$ is called a homomorphism

if $f(x * y) = f(x) \Delta f(y)$, for all $x, y \in X$.

Definition: 4.2

Let (X, *, 0) and $(Y, \Delta, 0)$ be B-algebras. A mapping $f: X \to Y$ is called an anti homomorphism, if $f(x * y) = f(y) \Delta f(x)$, for all $x, y \in X$.

Definition: 4.3

Let $f : X \to X$ be an endomorphism and μ be a fuzzy set in X. We define a new fuzzy set in X by μ_f in X as $\mu_f(x) = \mu(f(x))$ for all x in X.

Definition: 4.4

For any homomorphism f: $X \to Y$ the set $\{x \in X/f(x) = 0'\}$ is called the Kernal of f, denoted by Ker(f) and the set $\{f(x)/x \in X\}$ is called the image of f denoted by Im(f).

Theorem: 4.5

Let f be an endomorphism of a B – algebra X. If μ is an anti fuzzy B- Ideal of X, then so is μ_f .

Proof:

 $\mu_f(0) = \mu(f(0))$

$$\leq \mu(\mathbf{f}(\mathbf{x}))$$

$$=\mu_f(\mathbf{x})$$

Let x, y, z ϵ X

Then

$$\mu_{f}(y * z) = \mu(f(y * z))$$

= $\mu(f(y) * f(z))$
 $\leq \max \{\mu (f(x) * f(y)), \mu (f(z) * f(x)) \}$
= $\max \{\mu (f(x * y)), \mu (f (z * x)) \}$
= $\max \{\mu_{f}(x * y), \mu_{f}(z * x) \}.$

Hence μ_f is an anti fuzzy B Ideal of X.

Theorem: 4.6

Let (X, *, 0) and $(Y, \Delta, 0')$ be B-algebras. A mapping f: $X \rightarrow Y$ is an anti homomorphism of B-algebra. Then Ker(f) is a B-ideal.

Proof:

Let
$$(x * y) * (z * x) \epsilon \operatorname{ker}(f) & x \epsilon \operatorname{ker}(f)$$

Then $f((x * y) * (z * x)) = 0'$ and $f(x) = 0'$
 $0' = f((x * y) * (z * x))$
 $= f(z * x) \Delta f((x * y))$
 $= (f(x) \Delta f(z)) \Delta (f(y) \Delta f(x))$
 $= (0' \Delta f(z)) \Delta (f(y) \Delta 0')$
 $= f(z) \Delta f(y)$
 $= f(y * z)$
 $\Rightarrow y * z \epsilon \operatorname{ker}(f)$

Hence Ker(f) is a B-ideal.

5. Cartesian Product of fuzzy B- ideals of B-Algebras

In this section, we introduce the concept of Cartesian product of anti fuzzy B – ideals of B algebras.

Definition: 5.1

Let μ and δ be the fuzzy sets in X. The Cartesian product $\mu \ge \delta : X \ge X \ge 0$, 1] is defined by $(\mu \ge \delta) (\ge, y) = \min\{\mu(x), \delta(y)\}$ for all $\ge, y \in X$.

Definition: 5.2

A fuzzy relation R on any set S is a fuzzy subset R: S x S \rightarrow [0, 1].

Definition: 5.3

Let μ and δ be the anti fuzzy B – ideals in X. The Cartesian product $\mu \ge \delta : \ge X \ge X \ge 0$, 1] is defined by $(\mu \ge \delta) (\ge x, y) = \max \{\mu(x), \delta(y)\}$ for all x, y $\in X$.

Definition: 5.4

Let S be a set and μ and δ be fuzzy subsets of S. Then

```
(i) \mu \ge \delta is a fuzzy relation on S,
```

(ii)
$$(\mu \ge \delta)_t = \mu_t \ge \delta_t$$
, for all $t \in [0, 1]$.

Definition: 5.5

Let S be a set and δ be fuzzy subset of S. The strongest fuzzy relation on S, that is a fuzzy relation on δ is R_{δ} given by

 $R_{\delta}(x, y) = \min \{\delta(x), \delta(y)\}, \text{ for all } x, y \in S.$

Definition: 5.6

For a given fuzzy subset δ of a set S, let R_{δ} be the strongest fuzzy relation on S. Then for

t \in [0,1], we have $(R_{\delta})_t = \delta_t \times \delta_t$.

Theorem: 5.7

For a given subset δ of a B-algebra X, let R_{δ} be the strongest fuzzy relation on X. If δ is an anti fuzzy B-ideal of X x X, then $R_{\delta}(X, X) \ge R_{\delta}(0, 0)$ for all x \in X.

Proof:

Given R_{δ} is an anti fuzzy B ideal.

Since R_{δ} be the strongest fuzzy relation of X x X, it follows from that

$$R_{\delta}(X,X) = \max \{ \delta(x), \delta(x) \}$$
$$\geq \max \{ \delta(0), \delta(0) \}$$
$$= R_{\delta}(0,0)$$

Which implies that $R_{\delta}(X, X) \ge R_{\delta}(0, 0)$.

Theorem: 5.8

For a given fuzzy subset δ of a B-algebra X, let R_{δ} be the strongest fuzzy relation on X. If R_{δ} is an anti fuzzy B-ideal of X x X then $\delta(X) \ge \delta(0)$ for all $x \in X$.

Proof :

Since R_{δ} is an anti fuzzy B-ideal of X x X then

 $R_{\delta}(X,X) \ge R_{\delta}(0,0)$ where (0,0) is the zero element of X x X

But this means that

 $\max \{\delta(x), \delta(y)\} \ge \max \{\delta(0), \delta(0)\}$

which implies that $\delta(x) \ge \delta(0)$.

Theorem: 5.9

If μ and δ are anti fuzzy B-ideals in a B-algebra X, then $\mu \ge \delta$ is an anti fuzzy B ideal in X x X.

Proof:

For any $(x, y) \in X \times X$ we have

$$(\mu \ge \delta) (0, 0) = \max\{\mu(0), \delta(0)\}$$

 $\leq \max\{\mu(x), \delta(y)\}$

 $= (\mu \ge \delta) (\ge x, y)$

Let (x_1, x_2) , (y_1, y_2) , $(z_1, z_2) \in X \times X$

 $(\mu \ge \delta) ((y_1, y_2) * (z_1, z_2)) = (\mu \ge \delta) (y_1 * z_1, y_2 * z_2)$

= max { μ ($y_1 * z_1$), δ ($y_2 * z_2$) }

 $\leq \max\{\max\{\mu(x_1 * y_1), \mu(z_1 * x_1), \max(\delta x_2 * y_2), \delta(z_2 * x_2)\}$

- $= \max \{\max\{\mu(x_1 * y_1), \delta(x_2 * y_2, \max\mu(z1 * x1), \delta(z2 * x2)\}\}$
- $= \max_{\substack{y2) \mu x \ \delta(z1 * x1, \ z2 * x2)}} \{\{(\mu x \, \delta)((x_1 * y_1), (x_2 * x_2) + (x_2 + x_2), ($

Therefore $\mu \ge \delta$ is an anti fuzzy B- ideal in X.

Theorem: 5.10

Let μ and δ be the fuzzy subsets in a B – Algebra X such that $\mu \ge \delta$ is an anti fuzzy B-ideal of X $\ge X$ then for all $\le X$,

- (i) Either $\mu(0) \le \mu(x)$ or $\delta(0) \le \delta(x)$.
- (ii) If $\mu(0) \le \mu(x)$ then either $\delta(0) \le \mu(x)$ (or) $\delta(0) \le \delta(x)$.
- (iii) If $\delta(0) \le \delta(x)$ then either $\mu(0) \le \mu(x)$ (or) $\mu(0) \le \delta(x)$.
- (iv) Either μ or δ is an anti fuzzy B-ideal of X.

Proof:

Let $\mu \ge \delta$ be an anti fuzzy B ideal in X $\ge X$

Therefore $(\mu \ge \delta) (0, 0) \le (\mu \ge \delta) (\ge, y)$ for all $(\ge, y) \in X \ge X$

$$(\mu \ge \delta) ((y_1, y_2) * (z_1, z_2)) \le max \{ (\mu \ge \delta) ((x_1, x_2) * y_1, y_2, \ \mu \ge \delta z_1, z_2 * x_1, x_2 \}$$

For all (x_1, x_2) , (y_1, y_2) , $(z_1, z_2) \in X \times X$

(i) Suppose that $\mu(0) > \mu(x)$ and $\delta(0) > \delta(x)$ for some x, y ϵ X

International Journal of Computer & Organization Trends –Volume 5 Issue 2 March to April 2015

 $(\mu \times \delta) (x, y) = \max \{\mu(x), \delta(y)\}$ $\leq \max \{\mu(0), \delta(0)\}$ $= (\mu \ x \ \delta) \ (0 \ , 0)$

Which is a contradiction.

Therefore $\mu(0) \le \mu(x)$ or $\delta(0) \le \delta(x)$ for all $x \in X$.

(ii) Assume that there exist x , y ϵ X such that $\delta(0) > \mu(x)$ and $\delta(0) > \delta(x)$.

Then
$$(\mu \ x \ \delta) (0, 0) = \max \{ \mu(0), \delta(0) \}$$

$$= \delta(0) \text{ and hence}$$
$$(\mu \ge \delta) (\ge x, y) = \max \{ \mu(\ge), \delta(y) \} < \delta(0)$$
$$= (\mu \ge \delta) (0, 0)$$

Which is a contradiction

Hence if $\mu(0) \le \mu(x)$ for all $x \in X$ then either $\delta(0) \leq \mu(x)$ (or) $\delta(0) \leq \delta(x)$.

Similarly we can prove that if $\delta(0) \leq \delta(x)$ for all $x \in X$ then either

 $\mu(0) \leq \mu(x)$ (or) $\mu(0) \leq \delta(x)$ which yields (iii).

(iii) First we prove that δ is an anti fuzzy B-ideal of X Since by (i) Either $\mu(0) \le \mu(x)$ or $\delta(0) \leq \delta(x)$ for all $x \in X$ Assume that $\delta(0) \leq \delta(x)$ for all $x \in X$ Then $\delta(x) = \max{\{\mu(0), \delta(x)\}}$ $= (\mu \mathbf{x} \delta) (0, \mathbf{x})$ $\delta(y * z) = \max{\{\mu(0), \delta(y * z)\}}$ $= (\mu \mathbf{x} \,\delta) \,(\,0\,,\,\mathbf{y} * \mathbf{z})$ $= (\mu \ge \delta) (0 \ast 0, y \ast z)$ $= (\mu \ge \delta) ((0,y) \ge (0,z))$ $\leq \max \{(\mu \times \delta)((0, x)) *$ $0, y, \mu x \delta 0, z * 0, x$ $= \max \{ (\mu \times \delta) (0 * 0, x * y) \}$ $\mu \mathbf{X} \,\delta(0*\,0,\,\mathbf{Z}*\,\mathbf{X})$ $= \max \{(\mu \times \delta)(0, x * y),$ $\mu x \delta 0$, z*x $= \max \left\{ \delta(x * y), \delta(z * x) \right\}$ Hence δ is an anti fuzzy B- ideal of x

> Next we will prove that μ is an anti fuzzy B- ideal of X. Let $\mu(0) \leq \mu(x)$

Since by (ii) Either $\delta(0) \le \mu(x)$ (or) $\delta(0) \leq \delta(x).$

Assume that $\delta(0) \leq \mu(x)$ then

$$\mu (x) = \max \{ \mu(0), \delta(x) \}$$
$$= (\mu x \delta) (x, 0)$$

$$\mu(y * z) = \max \{\mu(y * z), \delta(0)\} = (\mu x \delta) ((y * z), 0) = (\mu x \delta) ((y, 0) * (z, 0)) \leq \max \{(\mu x \delta)((x, 0) * (y, 0)), \mu x \delta z, 0 * x, 0 = \max \{(\mu x \delta)(x * y, 0 * 0), \mu x \delta z * x, 0 * 0 = \max \{\mu(x * y), \mu(z * x)\}$$

. .

Hence μ is an anti fuzzy B-ideal of X.

Theorem: 5.11

Let δ be a fuzzy subset in a B-algebra X and R_{δ} be the strongest fuzzy relation on X. Then δ is an anti fuzzy B-ideal of X if and only if R_{δ} is an anti fuzzy B-ideal of X x X.

Proof:

Suppose that δ is an anti fuzzy B – ideal of X.

Then

$$R_{\delta}(0, 0) = \max \{\delta(0), \delta(0)\}$$

$$\leq \max \{\delta(x), \delta(y)\}$$

$$= R_{\delta}(x, y), \text{ for all } (x, y) \in X \times X.$$

For any (x_1, x_2) , (y_1, y_2) , $(z_1, z_2) \in X \times X$.

$$R_{\delta}(y_1 * z_1, y_2 * z_2) = \max\{\delta(y_1 * z_1), \delta(y_2 * z_2)\}$$

$$\leq \max \{ \max \{ \delta(x_1 * y_1), \delta(z_1 * x_1) \}, \\ \max\{ \{ \delta(x_2 * y_2), \delta(z_2 * x_2) \} \}$$

$$= \max \{\max \{\delta(x_1 * y_1), \delta(x_2 * y_2)\}, \\ \max \{\delta(z_1 * x_1), \delta(z_2 * x_2)\} \}$$

$$= \max \{ R_{\delta}(x_1 * y_1, x_2 * y_2), R_{\delta}(z_1 * x_1, z_2 * x_2) \}$$

Hence R_{δ} is an anti fuzzy B – ideal of X x X.

Conversely, suppose that R_{δ} is an anti fuzzy B – ideal of X x X, by theorem (5.8), $\delta(0) \leq \delta(x)$ for all $x \in X$.

Now.

Let
$$(x_1, x_2)$$
, (y_1, y_2) , $(z_1, z_2) \in X \times X$.

Then.

$$\max \{ \delta(y_1 * z_1), \delta(y_2 * z_2) \} = R_{\delta}(y_1 * z_1, y_2 * z_2)$$

$$\leq \max \{R_{\delta}((x_{1}, x_{2}) * (y_{1}, y_{2})), R_{\delta}((z_{1}, z_{2}) * (x_{1}, x_{2}))\}$$

International Journal of Computer & Organization Trends – Volume 5 Issue 2 March to April 2015

$$= \max \{R_{\delta}((x_1 * y_1), (x_2 * y_2)), R_{\delta}((z_1 * x_1), (z_2 * x_2))\}$$

$$= \max \{\max \{\delta(x_1 * y_1), \delta(x_2 * y_2)\}, \\\max\{\{\delta(z_1 * x_1), \delta(z_2 * x_2)\}\}$$

In particular if we take $x_2 = y_2 = z_2 = 0$, then

$$\delta(y_1 * z_1) \le \max \{\delta(x_1 * y_1), \delta(z_1 * x_1)\}$$

This proves δ is an anti fuzzy B – ideal of X.

Theorem: 5.12

Let μ and δ be a fuzzy subsets of a B-algebra X such that $\mu \ge \delta$ is an anti fuzzy B-ideal of X $\ge X$. Then μ or δ is an anti fuzzy B-ideal of X.

Proof:

(i) By theorem (5.10) (i), without loss of generality we assume that μ(x) ≥ μ(0) for all x∈X. From the theorem (5.10) (iii) it follows that for all x∈X. either δ (0) ≤ μ(x) (or) δ (0) ≤ δ (x). If δ (0) ≤ μ(x) for all x∈X Then (μ x δ) (0, x) = max { δ (0), μ(x) } = μ(x)

Let $(x, y) \in X \times X$

Since $\mu \ge \delta$ is an anti fuzzy B-ideal of X,

By the theorem 5.9, we get $(\mu \times \delta)$ $(0, 0) \le (\mu \times \delta)(x, y)$

Let (x_1, x_2) , (y_1, y_2) , $(z_1, z_2) \in X \times X$ using B-ideal

$$(\mu \times \delta) (y_1 * z_1, y_2 * z_2) = \max \{\mu(y_1 * z_1), \delta(y_2 * z_2)\}$$

$$\leq \max\{\max\{\mu (x_1 * y_1), \mu (z_1 * x_1\delta x_2 * y_2, \delta (z_2 * x_2)\}$$

$$= max \{ \max \{ \mu (x_1 * y_1), \delta (x_2 * y_2 \mu (z1 * x1), \delta (z2 * x2) \} \}$$

$$= \max \{ \{ (\mu x \, \delta)(x_1 * y_1), (x_2 * y_2), (x_2 * y_2), (x_2 * x_1), (x_2 * x_2) \} \}$$

In particular we take $x_1 = y_1 = z_1 = 0$, then

$$\begin{split} \delta(y_2 * z_2) &= (\mu \times \delta) \ (0, \ , y_2 * z_2) \\ &= \max \quad \{\{(\mu \times \delta)(0, x_2 * y_2(\mu \times \delta) \ (0, z2 * x2) \\ &\leq \max\{\max\{\mu(0), \ \delta \ (x_2 * y_2, \mu \ (0), \ \delta \ (z2 * x2) \end{split} \end{split}$$

$$= \max \{ \delta (x_2 * y_2), \delta (z_2 * x_2) \}$$

This proves that δ is an anti fuzzy B-ideal of X. The second part is similar. This completes the proof.

6. Conclusion:

In this article we have discussed Anti fuzzy Bideals, Anti fuzzy B-algebras, Homomorphism, anti homomorphism and Cartesian product of Anti fuzzy B-ideal of B-algebras.

7. References

- R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy sets & systems, 35(1990), 121-124.
- [2] Jung R. Cho and H.S. Kim, On B-algebras and quasi groups, Quasi groups and related systems 7 (2001) 1-6.
- [3] Q. P. Hu and X. Li, on BCH-algebras, Mathematics Seminar Notes 11 (1983), 313-320.
- [4] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math, Japonica 23 (1978), no. 1, 1-26.
- [5] K. Iseki, On BCI-algebras, Mathematics Seminar Notes 8 (1980), 125-130.
- [6] Y. B. Jun, E.H.Roh and H.S. Kim, On BH-algebras, Sci.Mathematical 1 (1998), 347-354.
- [7] J.Meng and Y.B. Jun, BCK-algebras, Kyung Moon Sa. Co., Seoul, 1994.
- [8] J.Neggers and H.S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
- [9] H.K.Park and H.S.Kim, On quadratic B-algebras, Quasi groups and related systems 7 (2001), 67-72.
- [10] Sun Shin Ahn and Keumseong Bang, On Fuzzy Sub algebras in B-algebras, Commun. Korean Math.Soc.18(2003), No.3, pp. 429-437.
- [11] C. Yamini and S. Kailasavalli, Fuzzy B ideals on B algebras (2014).
- [12] Zadeh. L.A., Fuzzy sets, Inform .control, 8 (1965), 338-353.