A Study on Intuitionistic Anti L-Fuzzy M-Subgroups

P. Pandiammal

Professor, Department of Mathematics, PSNA College of Engg., & Tech., Dindigul, Tamil Nadu, India

Abstract—In this paper, we introduce the concept of intuitionistic anti L-fuzzy M- subgroups and investigate some related properties.

Keywords: Intuitionistic fuzzy subsets; Intuitionistic anti fuzzy subgroups; Intuitionistic anti L-fuzzy M-subgroups; Intuitionistic anti fuzzy characteristic; M-homomorphism.

I. INTRODUCTION

A fuzzy set theory has developed in many directions and finding application in a wide variety of fields. Zadeh's classical paper [19] of 1965 introduced the concepts of fuzzy sets and fuzzy set operations. The study of fuzzy groups was started by Rosenfeld [15] and it was extended by Roventa [16] who have introduced the concept of fuzzy groups operating on fuzzy sets and many researchers [1,7,9,10] are engaged in extending the concepts. The concept of intuitionistic fuzzy set was introduced by Atanassov. K.T [2,3], as a generalization of the notion of fuzzy sets. Choudhury. F.P et al [6] defined a fuzzy subgroup and fuzzy homomorphism. Palaniappan. N and Muthuraj, [11] defined the homomorphism, anti-homomorphism of a fuzzy and an anti-fuzzy subgroups. Pandiammal. P, Natarajan. R and Palaniappan. N, [13] defined the homomorphism, anti-homomorphism of an anti L-M-subgroup.In this paper we fuzzy introduce and discuss the algebraic nature of intuitionistic anti L-fuzzy M-groups with operator and obtain some related results.

II. PRELIMINARIES

2.1 Definition: Let G be a M-group. A Lfuzzy subset A of G is said to be **anti** Lfuzzy M-subgroup (ALFMSG) of G if its satisfies the following axioms:

- (i) $\mu_A(mxy) \leq \mu_A(x) \vee \mu_A(y)$,
- (ii) $\mu_A(x^{-1}) \le \mu_A(x)$, for all x and y in G.

 $\begin{array}{l} \textbf{2.2 Definition:} \ Let \ (G, \cdot) \ be \ a \ M\text{-group. An} \\ \text{intuitionistic L-fuzzy subset A of G is said to be an} \\ \textbf{intuitionistic L-fuzzy M-subgroup (ILFMSG)} \ of \ G \\ \text{if the following conditions are satisfied:} \qquad \qquad (i) \\ \mu_A(\ mxy\) \geq \mu_A(x) \wedge \mu_A(y), \qquad \qquad (ii) \\ \mu_A(x^{-1}) \geq \mu_A(x), \\ (iii) \ \nu_A(\ mxy\) \leq \nu_A(x) \vee \nu_A(y), \end{array}$

(iv) $v_A(x^{-1}) \le v_A(x)$, for all x & y in G.

2.3 Definition: Let (G, \cdot) and (G', \cdot) be any two M-groups. Let $f: G \to G'$ be any function and A be an intuitionistic L-fuzzy M-subgroup in G, V be an intuitionistic L-fuzzy M-subgroup in f(G) = G',

defined by
$$\mu_V(y) = \sup_{x \in f^{-1}(y)} \mu_A(x)$$
 and

$$\nu_V \ (y) = \inf_{x \in f^{-1}(y)} \nu_A(x), \ \text{for all} \ x \ \text{in} \ G \ \ \text{and} \ y \ \text{in} \ G^I.$$

Then A is called a preimage of V under f and is denoted by f⁻¹(V).

- **2.4 Definition:** Let A and B be any two intuitionistic L-fuzzy subsets of sets G and H, respectively. The product of A and B, denoted by AxB, is defined as AxB = { $\langle (x, y), \mu_{AxB}(x, y), \nu_{AxB}(x, y) \rangle / \text{ for all } x \text{ in G and y in H }, \text{ where } \mu_{AxB}(x, y) = \mu_{A}(x) \wedge \mu_{B}(y) \text{ and } \nu_{AxB}(x, y) = \nu_{A}(x) \vee \nu_{B}(y).$
- **2.5 Definition:** Let A and B be any two intuitionistic L-fuzzy M-subgroups of a M-group (G, \cdot) . Then A and B are said to be **conjugate intuitionistic L-fuzzy M-subgroups** of G if for some g in G, $\mu_A(x) = \mu_B(g^{-1}xg)$ and $\nu_A(x) = \nu_B(g^{-1}xg)$, for every x in G.
- **2.6 Definition:** Let A be an intuitionistic L-fuzzy subset in a set S, the **strongest intuitionistic** L-fuzzy relation on S, that is an intuitionistic L-fuzzy relation on A is V given by $\mu_V(x, y) = \mu_A(x) \wedge \mu_A(y)$ and $\nu_V(x, y) = \nu_A(x) \vee \nu_A(y)$, for all x and y in S.

III. INTUITIONISTIC ANTI L-FUZZY M-SUBGROUPS

- **3.1 Defintion:** An intuitionistic fuzzy subset μ in a group G is said to be an intuitionistic anti fuzzy subgroup of G if the following axioms are satisfied.
- $(i) \ \mu_A(\ xy\) \leq \mu_A(x) \vee \mu_A(y),$
- (ii) $\mu_A(x^{-1}) \le \mu_A(x)$,
- (iii) $v_A(xy) \ge v_A(x) \wedge v_A(y)$,
- (iv) $v_A(x^{-1}) \le v_A(x)$, for all x and y in G.
- **3.2 Proposition:** Let G be a group. An intuitionistic fuzzy subset μ in a group G is said to be an intuitionistic anti fuzzy subgroup of G if the following conditions are satisfied.(i) $\mu_A(xy) \leq \mu_A(x) \vee \mu_A(y)$, (ii) $\nu_A(xy) \geq \nu_A(x) \wedge \nu_A(y)$, for all x, y in G.
- **3.3 Definition:** Let G be an M-group and μ be an intuitionistic anti fuzzy group of G. If $\mu_A(mx) \leq \mu_A(x)$ and $\nu_A(mx) \geq \nu_A(x)$ for all x in G and m in M then μ is said to be an intuitionistic anti fuzzy subgroup with operator of G. We use the phrase μ is an intuitionistic anti L-fuzzy M-subgroup of G.
- **3.4 Example:** Let H be M-subgroup of an M-group G and let $A=(\mu_A,\nu_A)$ be an intuitionistic fuzzy set in G defined by

$$\mu_{A}(x) = \begin{cases} 0.5; & x \in H \\ 0.5; & \text{otherwise} \end{cases}$$

$$0.6; & x \in H$$

$$v_{A}(x) = \begin{cases} 0.6; & x \in H \\ 0.6; & x \in H \end{cases}$$

$$0.3; & \text{otherwise}$$

For all x in G. Then it is easy to verify that $A = (\mu_A, \nu_A)$ is an anti fuzzy M- subgroup of G.

3.5 Definition: Let A and B be any two intuitionistic anti L-fuzzy M-subgroups of a M-group (G, \cdot) . Then A and B are said to be **conjugate intuitionistic anti L-fuzzy** M-subgroups of G if for some g in G, $\mu_A(x) = \mu_B(g^{-1}xg)$ and $\nu_A(x) = \nu_B(g^{-1}xg)$, for every x in G.

- **3.6 Proposition:** If $\mu = (\delta \mu, \lambda \mu)$ is an intuitionistic anti fuzzy M-subgroup of an M- group G, then for any $x, y \in G$ and $m \in M$.
 - $(i) \ \mu_A(mxy\) \leq \mu_A(x) \vee \mu_A(y),$
 - (ii) $\mu_A(mx^{-1}) \le \mu_A(x)$ and
 - (iii) $v_A(mxy) \ge v_A(x) \wedge v_A(y)$,
- (iv) $v_A(mx^{-1}) \le v_A(x)$, for all x and y in G.
- **3.7 Theorem:** A is an intuitionistic anti L-fuzzy M-subgroup of a M-group (G, \cdot) if and only if $\mu_A(\ mxy^{-1}\) \le \mu_A(x) \lor \mu_A(y)$ and $\nu_A(\ mxy^{-1}) \ge \nu_A(x) \land \nu_A(y)$, for all $\ x$ and $\ y$ in $\ G$.

Proof: Let A be an intuitionistic anti L-fuzzy M-subgroup of a M-group (G, \cdot) .

Then,
$$\mu_A(mxy^{-1}) \le \mu_A(x) \lor \mu_A(y^{-1})$$

 $\leq \mu_A(x) \vee \mu_A(y)$, since A

is an IALFMSG of G.

Therefore, $\mu_A(\text{ mxy}^{-1}) \le \mu_A(x) \lor \mu_A(y)$, for all x and y in G.

And,
$$v_A(mxy^{-1}) \ge v_A(x) \wedge v_A(y^{-1})$$

 $\geq v_A(x) \wedge v_A(y)$, since A is an

IALFMSG of G.

Therefore, $\nu_A(\text{ mxy}^{-1}) \ge \nu_A(x) \wedge \nu_A(y)$, for all x and y in G.

Conversely, if $\mu_A(\ mxy^{-1}\) \le \mu_A(x) \lor \mu_A(y)$ and $\nu_A(\ mxy^{-1}\) \ge \nu_A(x) \land \nu_A(y)$,

replace y by x, then, $\mu_A(x) \ge \mu_A(e)$ and $\nu_A(x) \le \nu_A(e)$, for all x and y in G.

Now,
$$\mu_A(x^{-1}) = \mu_A(ex^{-1})$$

$$\leq \mu_A(e) \vee \mu_A(x) = \mu_A(x).$$

Therefore, $\mu_A(x^{-1}) \leq \mu_A(x)$.

It follows that, $\mu_A(xy) = \mu_A(x(y^{-1})^{-1})$

$$\leq \mu_A(x) \vee \mu_A(y^{-1})$$

$$\leq \mu_A(x) \vee \mu_A(y).$$

Therefore, $\mu_A(xy) \le \mu_A(x) \lor \mu_A(y)$, for all x and y in G.

And,
$$v_A(x^{-1}) = v_A(ex^{-1})$$

$$\geq v_A(e) \wedge v_A(x)$$

$$= v_A(x).$$

Therefore,
$$v_A(x^{-1}) \ge v_A(x)$$
.

Then, $v_A(xy) = v_A(x(y^{-1})^{-1}) \ge v_A(x) \wedge v_A(y^{-1}) \ge v_A(x) \wedge v_A(y)$.

Therefore, $\nu_A(xy) \ge \nu_A(x) \wedge \nu_A(y)$, for all x and y in G

Hence A is an intuitionistic anti L-fuzzy M-subgroup of a M-group G.

3.8 Theorem: Let A be an intuitionistic anti L-fuzzy subset of a group (G,\cdot) . If $\mu_A(e)=0$ and $\nu_A(e)=1$ and $\mu_A(mxy^{-1}) \leq \mu_A(x) \vee \mu_A(y)$ and $\nu_A(mxy^{-1}) \geq \nu_A(x) \wedge \nu_A(y)$, for all x and y in G, then A is an intuitionistic anti L-fuzzy M-subgroup of a M-group G.

Proof: Let x and y in G and e is the identity element in G.

Now,
$$\mu_A(x^{-1})=\mu_A(\ ex^{-1})\leq \mu_A(e)\vee \mu_A(x)=0\vee \mu_A(x)=\mu_A(x)$$

Therefore, $\mu_A(x^{-1}) \le \mu_A(x)$, for all x in G.

And
$$\begin{aligned} \nu_A(x^{\text{-}1}) &= \nu_A(\ ex^{\text{-}1}) \\ &\geq \nu_A(e) \wedge \nu_A(x) \\ &= 0 \wedge \nu_A(x) \\ &= \nu_A(x). \end{aligned}$$

Therefore, $v_A(x^{-1}) \ge v_A(x)$, for all x in G.

Now,
$$\mu_A(mxy) = \mu_A(x(y^{-1})^{-1})$$

 $\leq \mu_A(x) \vee \mu_A(y^{-1})$
 $\leq \mu_A(x) \vee \mu_A(y).$

Therefore, $\mu_A(mxy) \le \mu_A(x) \lor \mu_A(y)$, for all x and y in G.

And,
$$v_A(mxy) = v_A(x(y^{-1})^{-1})$$

 $\geq v_A(x) \wedge v_A(y^{-1})$
 $\geq v_A(x) \wedge v_A(y)$.

Therefore, $\nu_A(mxy) \ge \nu_A(x) \wedge \nu_A(y)$, for all x and y in G.

Hence A is an intuitionistic anti L-fuzzy M-subgroup of a M-group G.

2.9 Theorem: If A is an intuitionistic anti L-fuzzy M-subgroup of a M-group (G, \cdot) , then $H = \{x \mid x \in G : \mu_A(x) = 0, \nu_A(x) = 1\}$ is either empty or is a M-subgroup of a M-group G.

Proof: If no element satisfies this condition, then H is empty. If x and y in H, then $\mu_A(\text{mxy}^{-1}) \le \mu_A(x) \lor \mu_A(y^{-1}) \le \mu_A(x) \lor \mu_A(y) = 0$.

Therefore, $\mu_A(xy^{-1}) = 0$, for all x and y in G.

And,
$$v_A(xy^{-1}) \ge v_A(x) \wedge v_A(y^{-1})$$

= $v_A(x) \wedge v_A(y)$, (since A is an IALFMSG of G)
= $1 \wedge 1 = 1$.

Therefore, $v_A(xy^{-1}) = 1$, for all x and y in G. We get mxy $^{-1}$ in H.

Therefore, H is a M-subgroup of a M-group G.

Hence H is either empty or is a M-subgroup of M-group G.

2.10 Theorem: If A is an intuitionistic anti L-fuzzy M-subgroup of a M-group (G, \cdot) , then $H=\{\ x\in G:\ \mu_A(x)=\mu_A(e)\ \text{and}\ \nu_A(x)=\nu_A(e)\}$ is either empty or is a M-subgroup of a M-group G.

Proof: If no element satisfies this condition, then H is empty.

If x and y satisfies this condition, then $\mu_A(x^{-1}) = \mu_A(x) = \mu_A(e)$, $\nu_A(x^{-1}) = \nu_A(x) = \nu_A(e)$

Therefore, $\mu_A(x^{-1}) = \mu_A(e)$ and $\nu_A(x^{-1}) = \nu_A(e)$.

Hence x ⁻¹ in H.

Now,
$$\mu_A(mxy^{-1}) \le \mu_A(x) \lor \mu_A(y^{-1})$$

 $\le \mu_A(x) \lor \mu_A(y)$
 $= \mu_A(e) \lor \mu_A(e) = \mu_A(e).$

Therefore, $\mu_A(\ mxy^{\text{-}1}) \leq \mu_A(e)$, for all x and y in G--(1).

And,
$$\mu_A(e) = \mu_A((xy^{-1})(xy^{-1})^{-1})$$

$$\begin{split} & \leq \mu_A(\ xy^{\text{-}1}) \lor \mu_A(\ (\ xy^{\text{-}1})^{\text{-}1}) \\ & \leq \mu_A(xy^{\text{-}1}) \lor \mu_A(xy^{\text{-}1}) \\ & = \mu_A(xy^{\text{-}1}). \end{split}$$

Therefore, $\mu_A(e) \le \mu_A(xy^{-1})$, for all x and y in G----(2).

From (1) and (2), we get $\mu_{A}(e) = \mu_{A}(xy^{-1})$.

Now,
$$v_A(mxy^{-1}) \ge v_A(x) \wedge v_A(y^{-1})$$

$$\ge v_A(x) \wedge v_A(y)$$

$$= v_A(e) \wedge v_A(e) = v_A(e).$$

Therefore, $v_A(mxy^{-1}) \ge v_A(e)$, for all x and y in G----(3).

And,
$$v_A(e) = v_A((xy^{-1})(xy^{-1})^{-1})$$

$$\geq v_A(xy^{-1}) \wedge v_A((xy^{-1})^{-1})$$

$$\geq v_A(xy^{-1}) \wedge v_A(xy^{-1})$$

$$= v_A(xy^{-1}).$$

Therefore, $v_A(e) \ge v_A(xy^{-1})$, for all x and y in G-----(4).

From (3) and (4), we get $v_A(e) = v_A(xy^{-1})$.

Hence
$$\mu_A(e) = \mu_A(xy^{-1})$$
 and $\nu_A(e) = \nu_A(xy^{-1})$.

Therefore, mxy⁻¹ in H.

Hence H is either empty or is a M-subgroup of a M-group G.

2.11 Theorem: Let (G,\cdot) be a M-group. If A is an intuitionistic anti L-fuzzy M-subgroup of G, then $\mu_A(xy)=\mu_A(x)\vee\mu_A(y)$ and $\nu_A(xy)=\nu_A(x)\wedge\nu_A(y)$ with $\mu_A(x)\neq\mu_A(y)$ and $\nu_A(x)\neq\nu_A(y)$, for each x and y in G.

Proof: Let x and y belongs to G.

Assume that $\mu_A(x) < \mu_A(y)$ and $\nu_A(x) > \nu_A(y)$.

Now,
$$\begin{split} \mu_A(y) &= \mu_A(\ x^{\text{-}1}xy\) \\ &\leq \mu_A(\ x^{\text{-}1}\) \lor \mu_A(\ xy\) \\ &\leq \mu_A(x) \lor \mu_A(xy) \\ &= \mu_A(xy) \end{split}$$

$$\leq \mu_A(x) \vee \mu_A(y)$$

= $\mu_A(y)$.

Therefore, $\mu_A(xy)=\mu_A(y)=\mu_A(x)\vee\mu_A(y),$ for all x and y in G.

And,
$$v_A(y) = v_A(x^{-1}xy)$$

$$\geq v_A(x^{-1}) \wedge v_A(xy)$$

$$\geq v_A(x) \wedge v_A(xy) = v_A(xy)$$

$$\geq v_A(x) \wedge v_A(y) = v_A(y).$$

Therefore, $v_A(xy) = v_A(y) = v_A(x) \wedge v_A(y)$, for all x and y in G.

2.12 Theorem: If A is an intuitionistic anti L-fuzzy M-subgroup of a M-group G, then (i) $\mu_A(xy) = \mu_A(yx)$ if and only if $\mu_A(x) = \mu_A(y^{-1}xy)$, (ii) $\nu_A(xy) = \nu_A(yx)$ if and only if $\nu_A(x) = \nu_A(yx)$ if and only if $\nu_A(x) = \nu_A(yx)$ for x and y in G.

Proof: Let x and y be in G.

Assume that $\mu_A(xy) = \mu_A(yx)$, we have

$$\mu_A(y^{-1}xy) = \mu_A(y^{-1}yx) = \mu_A(ex) = \mu_A(x).$$

Therefore, $\mu_A(x) = \mu_A(y^{-1}xy)$, for all x and y in G.

Conversely, assume that $\mu_A(x) = \mu_A(y^{-1}xy)$,

we have
$$\mu_A(xy) = \mu_A(xyxx^{-1}) = \mu_A(yx)$$
.

Therefore, $\mu_A(xy) = \mu_A(yx)$, for all x and y in G.

Hence (i) is proved

Now, we assume that $v_A(xy) = v_A(yx)$,

we have
$$v_A(y^{-1}xy) = v_A(y^{-1}yx) = v_A(ex) = v_A(x)$$
.

Therefore, $v_A(x) = v_A(y^{-1}xy)$, for all x and y in G.

Conversely, we assume that $v_A(x) = v_A(y^{-1}xy)$,

we have
$$v_A(xy) = v_A(xyxx^{-1}) = v_A(yx)$$
.

Therefore, $v_A(xy) = v_A(yx)$, for all x and y in G.

Hence (ii) is proved.

2.13 Theorem: Let A be an intuitionistic anti L-fuzzy M-subgroup of a M-group G such that Im $\mu_A = \{ \alpha \}$ and Im $\nu_A = \{ \beta \}$, where α and β in L.

If $A = B \cup C$, where B and C are intuitionistic anti L-fuzzy M-subgroups of G, then either $B \subseteq C$ or $C \subseteq B$.

Proof:

Case (i): Let $A = B \cup C = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in G \},$

 $\begin{array}{lll} B=\{\ \langle\ x,\ \mu_B(x),\ \nu_B(x)\ \rangle\ /\ x{\in}G\ \}\ and\ C=\{\ \langle\ x,\ \mu_C(x),\nu_C(x)\ \rangle\ /\ x{\in}G\ \}. \end{array}$

Assume that $\mu_B(x)<\mu_C(x)$ and $\mu_B(y)>\mu_C(y),$ for some x and y in G.

Then,
$$\alpha=\mu_A(x)=\mu_{B\cup C}(x)=\mu_B(x)\wedge\mu_C(x)\\ =\mu_B(x)>\mu_C(x).$$

Therefore, $\alpha > \mu_C(x)$, for all x in G.

And,
$$\alpha = \mu_A(y) = \mu_{B \cup C}(y) = \mu_B(y) \land \mu_C(y)$$

= $\mu_C(y) > \mu_B(y)$.

Therefore, $\alpha > \mu_B(y)$, for all y in G.So that, $\mu_C(y) > \mu_C(x)$ and $\mu_B(x) > \mu_B(y)$.

Hence $\mu_B(xy) = \mu_B(y)$ and $\mu_C(xy) = \mu_C(x)$.

But then, $\alpha = \mu_A(xy) = \mu_{B \cup C}(xy) = \mu_B(xy) \lor \mu_C(xy) = \mu_B(y) \lor \mu_C(x) < \alpha$ -----(1).

Case (ii): Assume that $v_B(x) < v_C(x)$ and $v_B(y) > v_C(y)$, for some x and y in G.

Then, $\beta = \nu_A(x) = \nu_{B \cup C}(x) = \nu_B(x) \lor \nu_C(x) = \nu_B(x) \lt \nu_C(x)$. Therefore, $\beta \lt \nu_C(x)$, for all x in G.

And,
$$\beta = \nu_A(y) = \nu_{B \cup C}(y) = \nu_B(y) \lor \nu_C(y) = \nu_C(y) < \nu_B(y)$$
.

Therefore, $\beta < \nu_B(y)$, for all x in G. So that, $\nu_C(y) < \nu_C(x)$ and $\nu_B(x) < \nu_B(y)$.

Hence $v_B(xy) = v_B(y)$ and $v_C(xy) = v_C(x)$.

But then, $\beta = \nu_A(xy) = \nu_{B \cup C}(xy) = \nu_B(xy) \lor \nu_C(xy) = \nu_B(y) \lor \nu_C(x) > \beta$ -----(2).

It is a contradiction by (1) and (2).

Therefore, either $B \subseteq C$ or $C \subseteq B$ is true.

2.14 Theorem: If A is an intuitionistic anti L-fuzzy M-subgroup of a M-group G and if there is a sequence $\{x_n\}$ in G such that $\lim_{n \to \infty} \{ \mu_A(x_n) \lor \mu_A(x_n) \}$

$$x_n$$
) }=0 and $\lim_{n\to\alpha} \{ v_A(x_n) \wedge v_A(x_n) \} = 1$, then

 $\mu_A(e)=0$ and $\nu_A(e)=1$, where e is the identity element in G.

Proof: Let A be an intuitionistic L-fuzzy M-subgroup of a M-group G with e as its identity element in G and x in G be an arbitrary element. We have x in G implies x^{-1} in G and hence $xx^{-1} = e$

Then, we have
$$\mu_A(e) = \mu_A(xx^{-1}) \le \mu_A(x) \lor \mu_A(x^{-1})$$

 $\le \mu_A(x) \lor \mu_A(x).$

For each n, we have $\mu_A(e) \le \mu_A(x) \lor \mu_A(x)$.

Since
$$\mu_A(e) \le \lim_{n \to \alpha} \{ \mu_A(x_n) \lor \mu_A(x_n) \} = 0$$

Therefore $\mu_A(e) = 0$

And,
$$v_A(e) = v_A(xx^{-1}) \ge v_A(x) \wedge v_A(x^{-1})$$

= $v_A(x) \wedge v_A(x)$.

For each n, we have $v_A(e) \ge v_A(x) \wedge v_A(x)$. Since $v_A(e) \ge \lim_{n \to \infty} v_A(x_n) \wedge v_A(x_n) = 1$

Therefore, $v_A(e) = 1$

2.15 Theorem: If A and B are intuitionistic anti L-fuzzy M-subgroups of the M-groups G and H, respectively, then AxB is an intuitionistic anti L-fuzzy M-subgroup of GxH.

Proof: Let A and B be intuitionistic anti L-fuzzy M-subgroups of the M-groups G and H respectively. Let x_1 and x_2 be in G, y_1 and y_2 be in H.

Then (x_1, y_1) and (x_2, y_2) are in GxH.

Now,

$$\begin{array}{lll} \mu_{AxB} \left[\begin{array}{cccc} m(x_1, \, y_1)(x_2, \, y_2) \end{array} \right] = \mu_{AxB} \left(\begin{array}{cccc} mx_1x_2, \, my_1y_2 \end{array} \right) & = \\ \mu_A(& mx_1x_2 &) & \vee & \mu_B(& my_1y_2 &) \\ \leq \left\{ \left. \mu_A(x_1) & \vee & \mu_A(x_2 &) \right\} & \vee \left\{ \mu_B(y_1) & \vee & \mu_B(y_2) & \right\} \\ = \left\{ \left. \mu_A(x_1) & \vee & \mu_B(y_1) & \right\} \vee & \left\{ \left. \mu_A(x_2) & \vee \mu_B(y_2) & \right\} \\ = \left. \mu_{AxB} \left(x_1, \, y_1 \right) \vee \, \mu_{AxB} \left(x_2, \, y_2 \right). \end{array} \right.$$

Therefore, μ_{AxB} [$m(x_1, y_1)(x_2, y_2)$] $\leq \mu_{AxB}(x_1, y_1) \vee \mu_{AxB}(x_2, y_2)$, for all x_1 and x_2 in G, y_1 and y_2 in H.

And,
$$v_{AxB}$$
 [$m(x_1, y_1)(x_2, y_2)$]

$$= v_{AxB} (mx_1x_2, my_1y_2)$$

$$\begin{split} &= \nu_{A}(mx_{1}x_{2}) \wedge \nu_{B}(my_{1}y_{2}) \\ &\geq \left\{ \nu_{A}(x_{1}) \wedge \nu_{A}(x_{2}) \right\} \wedge \left\{ \nu_{B}(y_{1}) \wedge \nu_{B}(y_{2}) \right\} \\ &= \left\{ \nu_{A}(x_{1}) \wedge \nu_{B}(y_{1}) \right\} \wedge \left\{ \nu_{A}(x_{2}) \wedge \nu_{B}(y_{2}) \right\} \\ &= \nu_{AxB}(x_{1}, y_{1}) \wedge \nu_{AxB}(x_{2}, y_{2}). \end{split}$$

Therefore, v_{AxB} [$m(x_1, y_1)(x_2, y_2)$] $\geq v_{AxB}(x_1, y_1) \wedge v_{AxB}(x_2, y_2)$, for all x_1 and x_2 in G, y_1 and y_2 in H. Hence AxB is an intuitionistic anti L-fuzzy M-subgroup of GxH.

2.16 Theorem: Let an intuitionistic anti L-fuzzy M-subgroup A of a M-group G be conjugate to an intuitionistic anti L-fuzzy M-subgroup M of G and an intuitionistic anti L-fuzzy M-subgroup B of a M-group H be conjugate to an intuitionistic anti L-fuzzy M-subgroup N of H. Then an intuitionistic anti L-fuzzy M-subgroup AxB of a M-group GxH is conjugate to an intuitionistic anti L-fuzzy M-subgroup MxN of GxH.

Proof: Let A and B be intuitionistic anti L-fuzzy M-subgroups of the M-groups G and H respectively. Let x, x^{-1} and f be in G and y, y^{-1} and g be in H.

Then (x, y), (x^{-1}, y^{-1}) and (f, g) are in GxH.

Now,
$$\begin{split} \mu_{AxB}\,(\,f,g\,) &= \mu_A(f) \vee \mu_B(g) \\ &= \mu_M(\,xf\,x^{\text{-}1}) \vee \mu_N(\,yg\,y^{\text{-}1}) \\ &= \mu_{MxN}(\,xf\,x^{\text{-}1},\,yg\,y^{\text{-}1}) \\ &= \mu_{MxN}[\,\,(x,\,y)(f,\,g)(x^{\text{-}1},\,y^{\text{-}1}) \\] \\ &= \mu_{MxN}[\,\,(x,\,y)\,\,(f,\,g)(x,\,y\,)^{\text{-}1} \end{split}$$

Therefore, μ_{AxB} ($f,~g~)=\mu_{MxN}[~(x,~y)~(f,~g)(x,~y~)^{-1}~], for all <math display="inline">x,~x^{-1}$ and f in G and $y,~y^{-1}$ and g in H.

And,
$$\begin{split} \nu_{AxB}\,(\,f,g\,) &= \,\nu_A(f) \wedge \nu_B(g) \\ &= \,\nu_M(\,xf\,x^{\text{-}1}) \wedge \nu_N(\,yg\,y^{\text{-}1}) \\ &= \nu_{MxN}(\,xf\,x^{\text{-}1},\,yg\,y^{\text{-}1}) \\ &= \nu_{MxN}[\,\,(x,\,y)(f,\,g)(x^{\text{-}1},\,y^{\text{-}1}) \\ \\ &= \nu_{MxN}[\,\,(x,\,y)\,(f,\,g)(x,\,y\,)^{\text{-}1} \end{split}$$

Therefore, ν_{AxB} (f, g) = ν_{MxN} [(x, y) (f, g)(x, y) $^{-1}$], for all x, x^{-1} and f in G and y, y^{-1} and g in H.

Hence an intuitionistic anti L-fuzzy M-subgroup AxB of GxH is conjugate to an intuitionistic anti L-fuzzy M-subgroup MxN of GxH.

- **2.17 Theorem:** Let A and B be intuitionistic L-fuzzy subsets of the M-groups G and H, respectively. Suppose that e and e¹ are the identity element of G and H, respectively. If AxB is an intuitionistic anti L-fuzzy M-subgroup of GxH, then at least one of the following two statements
- (i) $\mu_B(e^{\perp}) \le \mu_A(x)$ and $\nu_B(e^{\perp}) \ge \nu_A(x)$, for all x in G,
- (ii) $\mu_A(e) \le \mu_B(y)$ and $\nu_A(e) \ge \nu_B(y)$, for all y in H.

Proof: Let AxB is an intuitionistic anti L-fuzzy M-subgroup of GxH.

By contraposition, suppose that none of the statements (i) and (ii) holds.

Then we can find a in G and b in H such that

$$\mu_A(a)<\mu_B(e^\top),~\nu_A(a)>\nu_B(e^\top)$$
 and $\mu_B(b)<\mu_A(e),~\nu_B(b)>\nu_A(e).$

We have,
$$\mu_{AxB}(a, b) = \mu_A(a) \vee \mu_B(b)$$

$$<\mu_{A}(e)\vee\mu_{B}(e^{^{I}})=\mu_{AxB}\ (e,\,e^{^{I}}).$$
). And,
$$\nu_{AxB}\,(\,a,\,b\,)=\,\nu_{A}(a)\wedge\nu_{B}(b)$$

$$>\nu_{A}(e)\,\wedge\,\nu_{B}(e^{^{I}})=\nu_{AxB}\,(e,\,e^{^{I}}).$$

Thus AxB is not an intuitionistic anti L-fuzzy M-subgroup of GxH.

Hence either $\mu_B(e^l) \le \mu_A(x)$ and $\nu_B(e^l) \ge \nu_A(x)$, for all x in G or $\mu_A(e) \le \mu_B(y)$ and $\nu_A(e) \ge \nu_B(y)$, for all y in H.

III - INTUITIONISTIC ANTI L-FUZZY M-SUBGROUPS UNDER HOMOMORPHISM AND ANTI-HOMOMORPHISM

3.1 Theorem: Let (G, \cdot) and (G', \cdot) be any two M-groups. The homomorphic image (pre-image) of an intuitionistic anti L-fuzzy M-subgroup of G is an intuitionistic anti L-fuzzy M-subgroup of G'.

Proof: Let (G, \cdot) and (G', \cdot) be any two groups and $f: G \rightarrow G'$ be a homomorphism.

That is f(xy) = f(x)f(y), f(mx) = mf(x), for all x and y in G and m in M. Let V=f(A), where A is an intuitionistic anti L-fuzzy M-subgroup of a M-group G. We have to prove that V is an intuitionistic anti L-fuzzy M-subgroup of G^{l} .

Now, for f(x) and f(y) in G^{\dagger} , we have

 $\mu_V(mf(x)f(y))=\mu_V(f(mxy)),$

(as f is a homomorphism)

 $\leq \mu_A(mxy)$

 $\leq \ \mu_A(x) \ \lor \ \mu_A(y), \ as \ A \ is \ an \ IALFMSG \ of \ G$

which implies that $\mu_V(mf(x)f(y)) \le \mu_V(f(x)) \lor \mu_V(f(y))$, for all x and y in G.

For f(x) in G^{I} , we have,

$$\mu_V([f(x)]^{-1})=\mu_V(f(x^{-1})),$$

(as f is a homomorphism)

$$\leq \mu_A(x^{-1})$$

 $\leq \mu_A(x)$, as A is an IALFMSG

as f is a homomorphism

$$\geq v_A(mxy)$$

$$\geq v_A(x) \wedge v_A(y)$$
,

as A is an IALFMSG of

G,

which implies that $v_V(f(x)f(y)) \ge v_V(f(x)) \land v_V(f(y))$, for all x and y in G.

$$v_{V}([f(x)]^{-1}) = v_{V}(f(x^{-1})),$$

(as f is a homomorphism) $\geq \nu_A(x^{\text{-}1})$

 $\geq \nu_A(x), \text{ as } A \text{ is an IALFMSG of } G,$

which implies that $v_V([f(x)]^{-1}) \ge v_V(f(x))$, for all x in G.

Hence V is an intuitionistic anti L-fuzzy M-subgroup of a M-group G^{I} .

3.2 Theorem: Let (G, \cdot) and (G', \cdot) be any two M-groups. The anti-homomorphic image (preimage) of an intuitionistic anti L-fuzzy M-subgroup of G is an intuitionistic anti L-fuzzy M-subgroup of G'.

Proof: Let (G, \cdot) and (G', \cdot) be any two M-groups and $f: G \to G'$ be an anti-homomorphism. That is f(xy) = f(y)f(x), $f(mx) = m \ f(x)$, for all x and y in G and m in M. Let V = f(A), where A is an intuitionistic anti L-fuzzy M-subgroup of a M-group G.

We have to prove that V is an intuitionistic anti L-fuzzy M-subgroup of a M-group G¹.

Now, let f(x) and $f(y) \in G^1$, we have

$$\mu_V(mf(x)f(y)) = \mu_V(f(myx)),$$

(as f is an anti-homomorphism)

$$\leq \mu_A(myx)$$

$$\leq \mu_A(x) \vee \mu_A(y),$$

(as A is an IALFMSG of

G)

which implies that $\mu_V(mf(x)f(y)) \le \mu_V(f(x)) \lor \mu_V(f(y))$, for all x and y in G.

For x in G,
$$\mu_V([f(x)]^{-1}) = \mu_V(f(x^{-1}))$$

$$\leq \mu_A(x^{-1}) \leq \mu_A(x)$$
, as A is an IALFMSG of G,

which implies that $\mu_V([f(x)]^{-1}) \le \mu_V(f(x))$, for all x in G.

And,
$$v_V(mf(x)f(y)) = v_V(f(myx))$$

$$\geq \nu_A(myx) \geq \nu_A(x) \wedge \nu_A(y) \;,\;\; as$$
 A is an IALFMSG of G.

which implies that $v_V(f(x)f(y)) \ge v_V(f(x)) \land v_V(f(y))$, for all x and y in G.

Also,
$$v_V([f(x)]^{-1}) = v_V(f(x^{-1}))$$

$$\geq v_A(x^{-1}) \geq v_A(x)$$
, as A is an IALFMSG of G,

which implies that $\ \nu_V(\ [f(x)]^{\text{-}1}\) \geq \nu_V(\ f(x)\),$ for all x in G.

Hence V is an intuitionistic anti L-fuzzy M-subgroup of a M-group G¹.

IV CONCLUSION

Further work is in progress in order to develop the intuitionistic anti L- fuzzy normal M -subgroups, intuitionistic anti L- fuzzy M-N-subgroup and intuitionistic anti L-fuzzy normal M-N-subgroups.

REFERENCES

- [1] Aktas, H and Cagman, N., "Generalized product of fuzzy subgroup and t level subgroups", Math. Commun, Vol. 11, pp.121–128, 2006.
- [2] Atanassov. K. T.," Intuitionistic fuzzy sets", Fuzzy sets and systems, Vol. 20, pp. 87 96,1986
 [3] Atanassov. K. T., "New operations defined over the
- [3] Atanassov. K. T., "New operations defined over the intuitionistic fuzzy sets", Fuzzy sets and systems, Vol. 61, pp.137 –142, 1994
- [4] Azriel Rosenfeld, Fuzzy Groups, Journal of mathematical analysis and applications 35, (1971) 512-517.
- [5] R. Biswas, Fuzzy subgroups and anti-fuzzy subgroups, Fuzzy Sets and Systems 35 (1990), 121-124.
- [6] Choudhury. F. P and Chakraborty. A. B and Khare. S. S., "A note on fuzzy subgroups and fuzzy homomorphism", Journal of mathematical analysis and applications, Vol.131, pp.537 – 553,1988.
- [7] J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl.18(1967),145-179.
- [8] Jacobson. N., Lectures in abstract algebras. East west press, 1951.
- [9] Mohamed Asaad, Groups and Fuzzy Subgroups, Fuzzy Sets and Systems 39(1991)323-328.
- [10] Massa'deh. M. O and For a. A.A., "Centralizer of upper fuzzy groups", Pioneer journal of mathematics and mathematical sciences, Vol.1, pp. 81-88, 2011
- [11] N.Palaniappan, R.Muthuraj, The homomorphism, Antihomomorphism of a fuzzy and an anti-fuzzy group, Varahmihir Journal of mathematical Sciences, 4 (2)(2004) 387-399
- [12] N.Palaniappan , S. Naganathan, & K. Arjunan, A Study on Intuitionistic L-Fuzzy Subgroups, Applied mathematical Sciences, 3 (53) (2009) 2619-2624.
- [13] Pandiammal. P, Natarajan. R, and Palaniappan. N, Anti L-fuzzy M-subgroups, Antarctica J. Math., Vol. 7, number 6, 683-691, (2010).
- [14] Prabir Bhattacharya, Fuzzy subgroups: Some characterizations, J. Math. Anal. Appl. 128 (1981) 241-252.
- [15] Rosenfeld. A.," Fuzzy groups", J. Math. Anal. Appl, Vol. 35, pp. 512 – 517, 1971.
- [16] Roventa. A and Spircu. T.," Groups operating on fuzzy sets", Fuzzy sets and systems, Vol. 120, pp. 543 – 548,2001.
- [17] Sulaiman. R and Ahmad. A. G.," The number of fuzzy subgroups of finite ncyclic groups", Int. Math. Forum, Vol.6, pp. 987 994,2011.
- [18] Tarnauceanu. M and Bentea.L.," On the number of fuzzy subgroup of finite abelian groups", Fuzzy sets and systems, Vol. 159, pp. 1084 1096,2008.
- [19] L.A. Zadeh, Fuzzy sets, Information and control, 8, (1965) 338-353.