On the Diophantine Equation $x^{n+1} + y^{n+1} = z^{n+1} + k^{m+1}$

Dr. J.Kaliga Rani, M.Meenakshi

Professor, Department of Mathematics, P.S.N.A College of Engineering and Technology, Dindigul. Assistant Professor, Department of Mathematics, P.S.N.A College of Engineering and Technology, Dindigul.

ABSTRACT

On the Diophantine equation

 $x^{n+1} + y^{n+1} = z^{n+1} + k^{m+1}$, we analyse the integral solution for some value of m and n with k = 2. Observation found were recorded and presented.

KEYWORDS

Diophantine equation, integral solutions.

INTRODUCTION

The theory of Diophantine equations plays a significant role in higher arithmetic and has a marvelous effect on credulous people and always occupies a remarkable position due to unquestioned historical importance. Mathematicians worldwide have made a lot of discoveries, provided a huge number of theorems and have also deduced many amazing results[1-5].

In [6-9], the Diophantine equations for which we require integral solutions or algebraic equations with integer coefficient. In this context, one may refer [10 - 14] for various choices of the ternary quadratic Diophantine equations.

In this communication, we discussed with problem of obtaining infinitely many non-trivial integral solutions on the diophantine equation $x^{n+1} + y^{n+1} = z^{n+1} + k^{m+1}$, for particular values of k, m and n. A few results were presented.

METHOD

On the Diophantine equation

 $x^{n+1} + y^{n+1} = z^{n+1} + k^{m+1}$, we discuss the integral solutions for particular values of k, m and n.

In this paper, we take k=2 and proceed with the equation. In choice 1, we consider m = 1 and n = 1, two different patterns are presented to find the integral solutions of equation I and various results are illustrated. Some numerical examples are also discussed, In choice 2, taking m = 2 and n = 1, another two patterns are presented, with numerical examples.

CHOICE 1:

Equation is reduced to ternary quadratic diophantine equation, To find the integral solutions, the pattern are presented below.

PATTERN 1:

=

Assuming the value z = Rx in the ternary quadratic diophantine equation, we get a equation

$$y^2 = (R^2 - 1)x^2 + 1$$
 by considering the pellian y_0
R, $x_0 = 1$.

The general solution (x_s, y_s) is given by

$$y_s + \sqrt{(R^2 - 1)}x_s = 2[R + \sqrt{(R^2 - 1)}]^{s+1}$$

 $y_s - \sqrt{(R^2 - 1)}x_s = 2[R - \sqrt{(R^2 - 1)}]^{s+1}, \quad s = 0, 1,$ 2, because irrational roots occur in pairs,

Solving the above two equations, we get

$$Y_{s} = \left[\left(R + \sqrt{(R^{2} - 1)} \right)^{s+1} + \left(R - \sqrt{(R^{2} - 1)} \right)^{s+1} \right] \rightarrow I$$

$$x_{s} = \frac{1}{\sqrt{(R^{2} - 1)}}$$

$$\left[\left(R + \sqrt{(R^{2} - 1)} \right)^{s+1} - \left(R - \sqrt{(R^{2} - 1)} \right)^{s+1} \right] \rightarrow II$$

Substituting in the assumption

$$\begin{aligned} z_{s} &= \frac{R}{\sqrt{(R^{2} - 1)}} \\ &\left[\left(R + \sqrt{(R^{2} - 1)} \right)^{s+1} - \frac{1}{\sqrt{(R^{2} - 1)}} \right]^{s+1} \\ &\to \text{III} \end{aligned}$$

$$\widetilde{X_s} = \frac{1}{2} \left[(3 + 2\sqrt{2})^{s+1} + (3 - 2\sqrt{2})^{s+1} \right]$$

and hence

$$\widetilde{z}_{s} = \frac{1}{2\sqrt{2}}[(3 + 2\sqrt{2})^{s+1} - (3 - 2\sqrt{2})^{s+1}]$$

Applying Brahmagupta lemma between the solutions (X_0, z_0) and $(\widetilde{X_s}, \widetilde{z_s})$ the other solutions are presented as

$$X_{s+1} = \frac{1}{2\sqrt{2}} [\sqrt{2}(k+4)U + 2(k+2)V]$$

$$z_{s+1} = \frac{1}{2\sqrt{2}} [\sqrt{2}(k+4)U + (k+4)V] \rightarrow V$$

where $U = (3 + 2\sqrt{2})^{s+1} + (3 - 2\sqrt{2})^{s+1}$ and

$$V = (3 + 2\sqrt{2})^{s+1} - (3 - 2\sqrt{2})^{s+1}$$

 y_{s+1} were simplified from the results which are already available. Therefore,

$$y_{s+1} = \frac{1}{2} \left[\frac{1}{2\sqrt{2}} \{ \sqrt{2}(k+4)U + 2(k+2)V \} - k \right] \rightarrow VI$$

Since we are interested in finding the integral solution of x_{s+1} , by substituting y_{s+1} , in the assumption we get

$$x_{s+1} = \frac{1}{2} \left[\frac{1}{2\sqrt{2}} \{ \sqrt{2}(k+4)U + 2(k+2)V \} - k \right] + k$$

$$\rightarrow \text{ VII}$$

Therefore, the integral solution for the diophantine equation considered are V, VI and VII.

NUMERICAL EXAMPLE

Numerical examples are given below when k takes even values k = 2, 4 and 6.

k = 2

	x_{s+1}	y_{s+1}	Z_{s+1}
S=0	18	16	24
S=1	100	98	140
S=2	578	576	816

•
$$y_{4s+3} = y_s^4 - 4y_s^2 - 16$$

- $y_{2s+1} y_s^2 + 2 = 0$
- $y_{3s+2} = y_s^3 3y_s$
- $z_{3s+2} = z_s [y_s^2 1]$
- $2z_{2s+1=(R+1)}y_s[x_s+z_s]$

•
$$\frac{2z_{2s+1}}{x_{2s+1}} = (R+1)^2$$

•
$$x_{2s+1} = y_s x_s$$

•
$$(R+1)x_{2s+1} = y_s[x_s + z_s]$$

Recurrence relation satisfied by the solution are found by

 y_{s+2} - $2Ry_{s+1}{+}y_s$ = 0, x_{s+2} – $2Rx_{s+1}{+}x_s$ = 0 and z_{s+2} - $2Rz_{s+1}{+}z_s$ = 0

PATTERN 2:

Assuming the value of x as y + k, the general equation leads to

$$(2y+k)^2 = 2z^2 + 8 \cdot k^2 \qquad \rightarrow \text{ IV}$$

In order to reduce the equation into the well known pellian equation taking X = 2y + k. That is, to obtain the other solutions whose least positive integer solutions of IV is $y_0 = 2$, $x_0 = k + 2$ and $z_0 = k + 2$.

Pellian equation is $X^2 = 2z^2 + 1$ whose general solution ($\widetilde{X_s}, \widetilde{z_s}$) can be simplified as the solution

$$\begin{split} \widetilde{X_s} &+ \sqrt{2} \ \widetilde{z_s} = (3 + 2\sqrt{2})^{s+1}, \, s = 0, 1, 2, \dots , \\ \widetilde{X_s} &- \sqrt{2} \ \widetilde{z_s} = (3 - 2\sqrt{2})^{s+1}, \, s = 0, 1, 2, \dots , \end{split}$$

By solving the above two equation

S=3	3364	3362	4756
S=4	19602	19600	27720
S=5	114244	114242	161564
			k = 4

	x_{s+1}	y_{s+1}	z_{s+1}	
S=0	26	22	34	
S=1	142	138	198	
S=2	818	814	1154	
S=3	4758	4754	6726	
S=4	27722	27718	39202	
S=5	161566	161562	228486	
•	k = 6			

	x_{s+1}	y_{s+1}	Z_{s+1}
S=0	34	28	44
S=1	184	178	256
S=2	1058	1052	1492
S=3	6152	6146	8696
S=4	35842	35836	50684
S=5	208888	208882	295408

RESULTS:

- $\sum (x_{s+1} + y_{s+1} + z_{s+1}) = \sum x_{s+1} + \sum y_{s+1} + \sum z_{s+1}$ where s=0, 1, 2,
- $\sum (x_{s+1} + y_{s+1} + z_{s+1}),$

 $\sum x_{s+1}, \sum y_{s+1}, \sum z_{s+1} \equiv 0 \pmod{2}$ where

s=0, 1, 2,

• The difference between the summation of $x_{s+1}, y_{s+1}, z_{s+1}$ for k = 6 and for k = 4 is same as for k = 4 and k = 2.

CHOICE 2:

Two different patterns are exhibited to find the integral solution of ternary diophantine equation.

PATTERN 1:

Assuming the value of x as y + 3, the ternary diophantine equation is reduced to

$$(2y+3)^2 = 2z^2 + 7$$

Applying the similar method followed in the previous section, we get

$$y_s = \frac{1}{4} [3R + \sqrt{2}S - 6]$$

 $z_s = \frac{1}{2\sqrt{2}} [\sqrt{2}R + 3S]$

and hence $x_s = \frac{1}{4} [3R + \sqrt{2} S + 6]$

R and S are taken as

$$\mathbf{R} = (3 + 2\sqrt{2})^{s+1} + (3 - 2\sqrt{2})^{s+1}$$

 $S = (3 + 2\sqrt{2})^{s+1} - (3 - 2\sqrt{2})^{s+1}$ Therefore the non-zero integral solutions of ternary diophantine equations are

$$x_{s} = \frac{1}{4} [3R + \sqrt{2} S + 6]$$
$$y_{s} = \frac{1}{4} [3R + \sqrt{2} S - 6]$$
$$z_{s} = \frac{1}{2\sqrt{2}} [\sqrt{2} R + 3S]$$

The recurrence relation satisfied by the values x_s , y_s and z_s are expressed as

 $x_{s+2} - 6x_{s+1} + x_s = -6$, $y_{s+2} - 6y_{s+1} + y_s = 6$ and $z_{s+2} - 6z_{s+1} + z_s = 0$.

The initial values are

$$x_0 = 8, x_1 = 39, y_0 = 5, y_1 = 36, z_0 = 9, z_1 = 53$$

Numerical values recorded are

S	X _s	y _s	Zs
0	8	5	9
1	39	36	53
2	220	217	309
3	1275	1272	1801
4	7224	7421	10497

5	43263	43260	61181

Analysing these numerical values, the results found among them are presented here.

- $x_{2s} \equiv 0 \pmod{4} s \equiv 0, 1, 2, 3, \dots$
- $z_s + (2\beta + 1) \equiv 0 \pmod{2} \beta,$ s = 0, 1, 2,3,....
- $7(12x_{2s+1} 4z_{2s+1} 4) =$ $(12x_s - 4z_s - 18)^2$ $(2x_s - 3)^2 - 2z_s^2 = 7$

It is observed that $W = 6x_s - 2z_s - 9$,

 $T = 2x_s - 3z_s - 3$ satisfy the diophantine equation $W^2 = 2X^2 + 7^2$

PATTERN 2:

In order to find the non-zero integral solutions of ternary diophantine equation, the linear transformation is applied as z = r + s, x = r - s, by which the equation will reduce to

$$y^2 = 4rs + 8.$$

r ans s are distinct non-zero parameters. It is possible to choose r and s such that rs+2 is a square and the value of y is obtained.

The solutions of x, y and z were found.

Numerical illustration are elaborated in the following table as given below.

r	s	х	у	Z
2	7	-5	8	9
$n^2 + 2n$	1	$n^{2} +$		$n^2 + 2n$
- 1		2n –	2n+2	
		2		
2	2n ²	3- 2n ²	4n	$2n^2 + 1$
2	- 1		411	
$2n^2 + 4n$		$2n^2 +$	4 2 1	$2n^2 +$
+1	2	4n –	4n + 4	4n + 3
† 1		1	4	

CONCLUSION:

In this communication, we tried to find the non-zero integral solutions of ternary diophantine equation for particular values of k, m and n. Few patterns and some relations are observed. Numerical examples are also discussed, In extension of this, one may search for other patterns.

REFERENCES

- 1. Dicksen, L.E, History of the theory of numbers, vol.II, Chelsea Publishing company, Newyork(1952).
- Smith, D.E, History of Mathematics, vol.I and II, Dover 2. Publications, Newyork(1953).
- 3. Datta.B and Singh.A.N., History of Hindu Mathematics Asia Publishing House, Bombay(1938).
- 4. Mordell,L.J.,Diophantine Equations, Academic press, Newyork(1969).
- Telang.S.G., Number Theory, Tata McGraw-Hill Publishing 5. Company Limited, NewDelhi(1996).
- Chen Jian Hua, Complete Solution of the Diophantine 6. Equations $X^2 + 1 = dY^4$ and a Related Family of Quadratic Thue equations, Journal of number Theory 62(1997),71-99.
- 7 Dickson.L.E., History of the Theory of Numbers, Chelsea publishing company, Newyork, 1952.
- Leo.J.Alex and Lorraine. L. Foster, On the Diophantine 8. equation $1 + p^a = 2^b + 2^c p^d$, Rocky Mountain J. of Math, 15 (3)(1985) 739-761.
- 9. Paul van Wamelen, On the CM Character of the curves $y^2 = x^q - 1$, Journal of Number Theory, 64 (1997) 59-83.
- 10. Gopalan.M.A., R.Ganapathy and R.Srikanth, "On the Diophantine Equation $Z^2 = AX^2 + BY^2$ ", Pure and Applied Mathematics Sciemces, vol.II,No. 1-2, September 2000.
- 11. Gopalan.M.A., and Pandichelvi.V., Integral solutions of Ternary Quadratic Equation z(x+y)=4xy., Acta Ciencia Indica, vol.XXXIV M, No 3, 1353(2008).
- 12. Goplalan.M.A., Manju Somnath and N.Vanitha., Integral Solutions of Ternary quadratic Diophantine Equation, $x^2 + y^2 = (k^2 + 1)^n z^2$, Impoact J.Sci.Tech.,vol2(4), 175-178,2008.
- 13. Gopalan.M.A., and Kaliga Rani.J., "A Special Pythagorean Triangle", Acta Ciencia Indica, vol.XXXIV M, No. 2, 867(2008).
- 14. Gopalan.M.A., and Kaliga Rani.J., "Observation on the **Diophantine Equation**

 $Y^2 = DX^2 + Z^2$ ", Impact J.Sci. Tech; vol2(2), 91-95,2008.