Cellular Automata: A Review

  IJCOT-book-cover
 
International Journal of Computer & Organization Trends  (IJCOT)          
 
© 2017 by IJCOT Journal
Volume - 8 Issue - 5
Year of Publication : 2018
AuthorsMuhammad Tehseen Qureshi, Muhammad Usman, Sadia Ilyas, Amna Amjad
  10.14445/22492593/IJCOT-V8I5P301

MLA

MLA Style: Muhammad Tehseen Qureshi, Muhammad Usman, Sadia Ilyas, Amna Amjad "Cellular Automata: A Review" International Journal of Engineering Trends and Technology 8.5 (2018): 1-9.

APA Style: Muhammad Tehseen Qureshi, Muhammad Usman, Sadia Ilyas, Amna Amjad (2018). Cellular Automata: A Review. International Journal of Engineering Trends and Technology, 8(5), 1-9.

Abstract

Various models for the recreation of dendritic solidification with Cellular Automaton based strategies have been distributed in the most recent two decades. A substantial assortment of various ideas have been explored, an imperative part of them with the goal to lessen the anisotropic influence of the much of the time utilized Cartesian matrix. The present survey offers a systematization of the distributed models by distinguishing the essential segments of a Cellular Automaton demonstrate depicting dendritic solidification of amalgams. These segments are observed to be three development calculations, that is, one for each of the three focal cell state factors, and a calculation for the figuring of the interface geometry. The diverse ways to deal with these four calculations are given and assessed uncommon respect toward conceivable potential for future research. Two of these calculations are observed to be of unique enthusiasm for further model improvement: (1) both of the most regularly received geometry figuring strategies, cell tallying and level set with Finite Differences, are relied upon to yield high mistakes, proposing the advancement of option methodologies and (2) the calculation for the change of state has the biggest effect on the anisotropic influence of the matrix. Elective methodologies, for example, the decentered square calculation, may prompt to significant change in reproduction quality.

References

[1] L.Beltran-Sanchez, D.M. Stefanescu, Metall. Mater. Trans. A – Phys. Metall. Mater. Sci. 35A (8) (2004) 2471–2485.
[2] M.F.Zhu, D.M. Stefanescu, Acta Mater. 55 (5) (2007) 1741–1755.
[3] S.Pan, M. Zhu, Acta Mater. 58 (1) (2010) 340–352.
[4] S.Luo, M.Y. Zhu, Comput. Mater. Sci. 71 (2013) 10–18.
[5] B.Schönfisch, Biosystems 41 (1) (1997) 29–41.
[6] M.Markus, Mathematical Population Dynamics: Proceedings of the Second International Conference, vol. 133, Marcel Dekker, New York, 1991.
[7] K.G.F.Janssens, Modell. Simul. Mater. Sci. Eng. 11 (2) (2003) 157–171.
[8] K.G.F.Janssens, E.A. Holm, S.M. Foiles, Mater. Sci. Forum 467–470 (2004) 1045.
[9] A.Z.Lorbiecka, B. Sarler, CMC – Comput. Mater. Continua 18 (1) (2010) 69–103.
[10] K.Reuther, M. Rettenmayr, Acta Mater. 60 (5) (2012) 2128–2134.
[11] K.Reuther, M. Rettenmayr, J. Comput. Phys., submitted for publication.
[12] A.Bösch, H. Mullerkrumbhaar, O. Shochet, Z. Phys. B – Condens. Matter 97 (2) (1995) 367–377.
[13] U.Dilthey, V. Pavlik, T. Reichel, Mathematical Modelling of Weld Phenomena 3; Materials Modelling Series, first ed., The Institute of Metals, London, 1997 (Chapter 5).
[14] L.Nastac, Acta Mater. 47 (17) (1999) 4253–4262.
[15] W.Wang, P.D. Lee, M. McLean, Acta Mater. 51 (10) (2003) 2971–2987.
[16] M.Nakagawa, Y. Natsume, K. Ohsasa, ISIJ Int. 46 (6) (2006) 909–913.
[17] M.J.M. Krane, D.R. Johnson, S. Raghavan, Appl. Math. Modell. 33 (5) (2009) 2234–2247.
[18] L.Beltran-Sanchez, D.M. Stefanescu, Metall. Mater. Trans. A – Phys. Metall. Mater. Sci. 34 (2) (2003) 367–382.
[19] Y.Natsume, K. Ohsasa, ISIJ Int. 46 (6) (2006) 896–902. [20] D.K.Sun, M.F. Zhu, T. Dai, W.S. Cao, S.L. Chen, D. Raabe, et al., Int. J. Cast Met. Res. 24 (3–4) (2011) 177–183.
[21] R.Sasikumar, R. Sreenivasan, Acta Metall. Mater. 42 (7) (1994) 2381–2386.
[22] Q. Li, B. Yu, H. Zhang, R. Li, F. Wang, S. Xie, et al., China Foundry 7 (2) (2010) 143–148.
[23] M.W.Wu, S.M. Xiong, Acta Metall. Sin. – English Lett. 25 (3) (2012) 169–178.
[24] Y.Zhao, R.S. Qin, D.F. Chen, J. Cryst. Growth 377 (2013) 72–77.
[25] S.C.Michelic, J.M. Thuswaldner, C. Bernhard, Acta Mater. 58 (7) (2010) 2738–275.
[26] C.A.Gandin, M. Rappaz, Acta Mater. 45 (5) (1997) 2187–2195.
[27] M.Rappaz, C.A. Gandin, Acta Metall. Mater. 41 (2) (1993) 345–360.
[28] J.Lipton, M.E. Glicksman, W. Kurz, Mater. Sci. Eng. 65 (1) (1984) 57–63.
[29] W.Kurz, B. Giovanola, R. Trivedi, Acta Metall. 34 (5) (1986) 823–830.
[30] M.F.Zhu, C.P. Hong, ISIJ Int. 41 (5) (2001) 436–445.
[31] Q.Y.Xu, B.C. Liu, Mater. Trans. 42 (11) (2001) 2316–2321.
[32] H.Yin, S.D. Felicelli, L. Wang, Acta Mater. 59 (8) (2011) 3124–3136.
[33] L.Wei, X. Lin, M. Wang, W. Huang, Phys. B-Condens. Matter 407 (13) (2012) 2471–2475.
[34] M.Marek, Phys. D – Nonlinear Phenom. 253 (2013) 73–84.
[35] R.Sasikumar, E. Jacob, Scr. Mater. 35 (4) (1996) 505–510.
[36] S.Osher, J.A. Sethian, J. Comput. Phys. 79 (1) (1988) 12–49.
[37] D.B.Kothe, R.C. Mjolsness, M. Torrey, Ripple: A computer program for incompressible flows with free surfaces, Los Alamos National Lab., Los Alamos, 1991. [38] V.R.Voller, Int. J. Heat Mass Transfer 51 (3–4) (2008) 823–834.
[39] J.B.Smith, J. Comput. Phys. 39 (1) (1981) 112–127.
[40] A.Jacot, M. Rappaz, Acta Mater. 50 (8) (2002) 1909–1926.
[41] W.Tan, N.S. Bailey, Y.C. Shin, Comput. Mater. Sci. 50 (9) (2011) 2573–2585.
[42] B.Nichols, C. Hirt, R. Hotchkiss, Sola-vof: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries, Tech. Rep., Los Alamos Scientific Laboratory, 1980.
[43] S.G.R.Brown, J.A. Spittle, Scr. Metall. Mater. 27 (11) (1992) 1599–1603.
[44] K.Kremeyer, J. Comput. Phys. 142 (1) (1998) 243–263.
[45] J.E.Taylor, J.W. Cahn, C.A. Handwerker, Acta Metall. Mater. 40 (7) (1992) 1443–1474.
[46] J.E.Taylor, Acta Metall. Mater. 40 (7) (1992) 1475 1485.
[47] D.W.Hoffman, J.W. Cahn, Surf. Sci. 31 (1) (1972) 368–388.
[48] J.W.Cahn, D.W. Hoffman, Acta Metall. 22 (10) (1974) 1205–1214.

Keywords
CA Models,Micro structures