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Abstract— In this paper, various metrics of software 

measurements are explained with examples. The standards 

developed for software measurement is described. The 

goals of these standards are also explained. The challenges 

of quality measurement for AI software are discussed here. 

AI software is different from the common software in two 

ways: it generally solves different kind of problems and it 

solves the problems in a very different way. 

AI software generally comes with a vague or a quickly 

changing requirement list. Quality measurement becomes 

meaningless as how far the objective has been achieved 

cannot be decided when the objective itself is not clear. 

Rapid prototyping and freezing of requirements is a short 

term measure for this issue. The other option is to identify 

the modules that can be implemented by conventional 

software and to integrate the measurement plan of all these 

modules with suitable modifications. 

Another issue is; AI software is often implemented in a 

heuristic manner that gives a poor readability and 

measurement problems. Further a conflict between the 

prejudiced human being as a tester and tolerant expert 

system may take place.  Ultimate goal of development of 

expert system is to provide solutions to problems impossible 

for normal human beings. Future research trends, both 

long and short term, are briefed here. 

 

Keywords—artificial-intelligence, software, quality, 

measurement. 

I.  INTRODUCTION 

Software quality measurement encompasses 

varieties of techniques [1]. As new types of software 

are emerging newer measurement techniques might be 

essential. Initial attempt was to adopt the well 

established techniques from hardware area. 

Measurement techniques are mainly based on 

measurement of defects or faults. In software area this 

is commonly called as bugs. Due to defects or bugs 

failures may take place. To estimate defects failure 

rates can be studied. Some of the metrics related to 

failure are:  

Failure Probability F(t): It is the probability that 

the software will fail prior to time t. 

Reliability R(t): It is the probability that the 

software will work satisfactorily till time t. Clearly, 

R(t)=1 – F(t). 

These metrics are extremely useful for hardware 

components and many other metrics are defined and 

analyzed. But estimation of these metrics for software 

does not seem to be a practical idea. Probability is 

estimated from large number of outcomes. For 

hardware components a batch produces a huge 

number of components. Estimation of various 

probabilities is quite feasible. Further the observed 

time tob can be scaled down from the predicted time t 

by application of temperature, bias, electric field or 

magnetic field stress. 

For software there is no established concept of 

stressing. The tester may need to wait for indefinite 

time to get the software failure. There might be no 

relation between software bugs and time t. Bugs 

usually show up for a particular input set. Whenever a 

bug is detected it should be removed. A bug removed 

at a later stage always proves to be very expensive for 

the software development. A bug in the requirement 

analysis phase proves costliest if detected by customer 

while using the software. This is in contradiction to 

hardware component testing situation where defects 

can be removed only in the next batch of 

manufacturing. For software, probability estimations 

are inconvenient due to lack of large number of 

outcomes. As soon as a bug is detected it is removed. 

After the bug removal this becomes a different 

product and the test results from different products 

cannot be clubbed. 

For software, thorough testing and immediate bug 

removal is the standard strategy. Testing can be 

classified into two categories: static and dynamic. In 

static testing thorough scrutiny is done without the 

actual execution. In dynamic testing some type of 

execution is necessary. There are various types of 

dynamic testing. Random testing is done for randomly 

generated inputs within the specified range. There is 

no guarantee that software will be bug free after 

random testing. Suppose software involves lots of 

divisions and division by zero is not taken care. 

Random inputs generated in a very large range of 

integers may not include a zero. The particular bug 

remains undetected. An exhaustive test with all input 

sets is very time consuming. Further the sequence of 

input application might be important for bug 

detection. This is true for some Artificial Intelligence 

(AI) software. 

Testing should be of regression type. In this type 

of testing after removal of a bug all the previously 

done tests are repeated. This is needed as a bug 

removal may or may not be successful and the 

removal process may introduce additional bugs. 

There are different views about what type of 

software can be put in the AI category. W. J. Rapaport 

made quite an exhaustive compilation of definitions of 

AI software [2]. It is surprising to note that most of the 
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definitions indicate that, this is new and emerging type 

of software with not enough quality measurement 

metrics, control and assurance. One such definition is: 

“AI is a collective name for problems which we do 

not yet know how to solve properly by computer. 

Once we do know how to solve them, they are no 

longer AI”. If we accept this definition quality 

measurement is definitely a challenge or might be 

impossible in some cases. However, to focus on a 

particular type of software we follow the first 

definition listed in this document: “The goal of work 

in artificial intelligence is to build machines that 

perform tasks normally requiring human intelligence”. 

We follow the dictionary meaning of intelligence as: 

“The ability to acquire and apply knowledge and 

skills”. 

Newborns are usually very intelligent. Though 

they do not have any knowledge or skill they have the 

capability to acquire and apply these. AI software just 

after implementation can be compared to a newborn’s 

brain. 

In the learning phase it may learn face recognition 

and becomes very knowledgeable. In the testing phase 

it applies its knowledge to recognize a face and take a 

suitable decision e.g. opening a door to a authenticated 

person. Prior to learning it did not have any 

knowledge but had the ability to learn and become 

knowledgeable. So it was intelligent. 

 

II. RELATED WORK 

Software measurement metrics are directly taken 

from the hardware component measurement. But the 

two situations are different. N. Fenton et al. 

emphasized the need for causality modeling [3]. 

Though the bugs are responsible for failure there is 

no relation between the detected bugs and subsequent 

failures. A detected bug is immediately removed. It is 

the residual bugs that create the subsequent failures. 

There is no relation between detected and the residual 

bugs. This can be seen in the measured data in fig. 1. 

 

 
Figure 1: Measured data for pre- and post-release 

defects for different modules [3]. 

Authors developed a tool named AID based on 

Bayesian network that can predict residual defects 

distribution. Two modules were used one very simple 

and the other very complex. From figures 2 and 3 it 

can be observed that, detected defect distribution is 

more in the simple module as compared to complex 

module. 

 
Figure 2: Distribution of defects detected in unit tests 

for a very simple module [3]. 

 

 
Figure 3: Distribution of defects detected in unit tests 

for a very complex module [3]. 

More number of detected defects does not 

necessarily imply more defects in the software. 

Though number of detected defects is much higher in 

simple module is does not mean a simple module has 

more defects than a complex module. From our 
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common sense we can say that, it is just the reverse. 

The complex module has less detected defects 

because such module can hide the defects. This 

becomes clear when residual defects are compared 

for the two modules from figures 4 and 5. 

 
Figure 4: Distribution for residual defects delivered for 

a very simple module [3]. 

 

 
Figure 5: Distribution for residual defects delivered for 

a very complex module [3]. 

 

M. Khraiwesh introduced the concept of Goal 

Question Metrics (GQM) [4]. This is integrated in the 

existing Capability Maturity Model Integration 

(CMMI). This model is developed in Carnegie Melon 

University and is practiced world-wide. The model 

considers product as well as process level 

measurements. Fig. 1 illustrates two types of goals. 

 

 
Figure 6: Example of specific and generic goals [4]. 

J. Mylopoulos et al. did a study on non-functional 

requirements based on goals [5] 

L. Prechelt did an extensive study on quality 

measurement status of Artificial Neural Network 

(ANN) software [6]. The author collected papers on 

ANN in the years 1993 – 94 from 5 journals. Total 

190 papers were studied. For ANN the quality is very 

much dependent on inputs. An algorithm should be 

evaluated experimentally for as many input sets as 

possible. It should be evaluated at-least for 2 input 

sets so that comparisons can be done between the 

two. Fig. 7 shows the % of reported algorithms vs. 

the no. of input sets. 

 
Figure 7: % of reported algorithms vs. no. of input sets 

[6]. 

 

Above figure shows that, only 33% of algorithms 

use 2 or more input sets. Often adequate input data of 

a particular set is not available or accessible. This 

problem is managed with artificial data inputs. These 

artificial data are generated from suitable models. 

Fig. 8 shows the % of reported algorithms vs. the no. 

of artificial input sets. 
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Figure 8: % of reported algorithms vs. no. of artificial 

input sets [6]. 

Above figure shows no. of tested algorithms for 2 or 

more input sets is further reduced. So non-availability 

of real data is not the issue. Fig. 9 shows the 

distribution for real data. Distribution remains the 

same as artificial data for input data-sets below 6. 

 

 
Figure 9: % of reported algorithms vs. no. of real input 

sets [6]. 

Many reasons were given for inadequate testing. 

Following gives the list of reasons along-with this 

paper author’s comments. 

A. An algorithm proposed for a very specific 

application domain does not allow use of general 

pupose test data. 

Even if varieties of data sets are not applicable a 

number of data sets can be created by selection of 

data from the original data set and quality can be 

compared. Use of noisy data-sets by introducing 

artificial noise is useful in some cases. 

B. Non-availability of comparable algorithms for the 

very specific application domain. 

But the algorithm can be compared with a 

general-purpose algorithm. 

C. Algorithms solving a problem for which no 

solution was given earlier so it cannot be 

compared to others. 

This is true. But such algorithms were not found 

in the reported study. 

D. Totally new approaches to a problem do not allow 

for comparison. 

Software measurement is independent of the 

approach. 

E. Often a thorough evaluation is too much work. 

But this needs to be done. 

F. Erroneous data. 

If only erroneous data are available the algorithm 

should be able to eliminate the effect of errors on the 

output. 

 

The study clearly shows quality 

measurement in this area is quite inadequate. Lots of 

work needs to be done. The effort takes a backseat as 

there are urgent needs for many practical applications 

using ANN algorithms. One of the biggest problems 

for quality measurement of ANN is the long 

execution time. Training phase may take a week 

depending on the nature of the problem. Whether the 

training is successful or not cannot be known during 

this phase. It can be known only in the next phase, the 

testing phase. For unsuccessful training again the 

very long training phase is to be repeated. Efforts are 

on to reduce the training phase time by developing 

novel architecture. D. F. Specht proposed General 

Regression Neural Network (GRNN) with clustering 

where training time is greatly reduced [7]. 

 

 
Figure 10: GRNN block diagram [7]. 

Here neurons arranged in four layers are 

shown by circles, In the layer prior to output layer, 

clustering is done that is very useful for regression 

analysis. It has been demonstrated that clustering 

greatly improves the execution time. The study has 
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been done for simulation of a simple plant with 

characteristics as given in fig. 11. 

 

 

 
Figure 11: Outputs in time steps of plant (dark line) and 

GRNN model (lighter line) after training with 1000 

patterns [7]. 

GRNN model works in a satisfactory way for reduced 

number of patterns. This can be understood if figures 

11 and 12 are compared. 

 

 
Figure 12: Output in time steps of plant (dark line) and 

GRNN model (lighter line) for only 10 input patterns 

[7]. 

 

 I. F. B. Tronto et al. compared traditional 

regression analysis and ANN [8]. Results in Table I 

show ANN performs better. 

Table 1 

 
 

R. S. Behara et al. did a detailed study on Service 

Quality Measurement abbreviated as SERVQUAL 

[9]. It is the difference in customer expectations and 

perceptions scores. In this reported work, service 

quality is measured along the five conceptually 

distinct yet interrelated dimensions: tangibles, 

reliability, responsiveness, assurance and empathy. A 

systematic diagram of SERVQUAL for auto-service 

named as reverse SERVQUAL is shown partly in fig. 

13. 

 

 
Figure 13: Reverse SERVQUAL, systematic diagram of 

service quality [9]. 

Instead of perception minus expectation model a 

perception only model is claimed to be more 

accurate. However, adequate experimental results are 

not available in this paper to support this claim. 

M. R. Genesereth and S. P. Ketchpel applied the 

recently developed concept of agent based computing 

to AI [10]. Agents are separate modules that might be 

developed in different languages, architectures and 

platforms. Agents based computing might be thought 

of at higher integration level than Object Oriented 

Programming (OOP). In OOP objects consist of data 

and process in the same language, architecture and 

platform. Figures 14 and 15 illustrate the differences 

between OOP and Multi Agent System (MAS). 
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Figure 14: Traditional software architecture [11] 

 

 

 
Figure 15: Architecture of Multi Agent Systems (MAS) 

[11]. 

 

 With use of agents the AI software becomes 

distributed and is called Distributed Artificial 

Intelligence (DAI). F. Zambonelli and A. Omicini 

[11] discussed the measurement issues with MAS. 

Existing tools work only for a particular language and 

platform. A new tool should view the interaction 

between agents at macro level. But at macro level 

quality measurement becomes an issue. If the 

interactions are studied at micro level it becomes too 

complex. Authors defined a new concept of “Meso” 

level of interaction to ease quality measurement 

studies. 

 M. Harman and B. F. Jones [12] applied 

Genetic Algorithm (GA) for information search an 

interesting application in the area of AI. Software 

measurement is an issue for such meta-heuristic 

algorithm. 

 

III. ANALYSIS  

 Initially quality measurement metrics 

were directly taken from the established 

metrics for hardware components. But 

software quality measurement is different 

from hardware quality measurement.  

 Software is flexible hardware is rigid. 

Sometimes the flexibility creates a 

problem for measurement. 

 For AI software dynamic testing is an 

issue. Software usually has long 

execution time with learning and testing 

phase. Failures can be detected only at 

the end phase or testing phase. 

 AI algorithms are of heuristic nature; this 

poses a problem for static testing. 

 AI software work with large number of 

input sets. Exhaustive test for all 

combination of inputs seems to be 

impractical. 

 For AI software testing at the learning 

phase sequence of inputs are important. 

 AI software has varieties of real life 

applications. For many emerging 

applications quality measurement 

demands a revisit. 

IV. CONCLUSION 

Software quality measurement is one of the most 

important tasks in software engineering. Initially the 

measurement metrics were taken from the existing 

hardware components. That creates a problem as two 

situations are different. Artificial intelligence software 

has several issues for quality measurement. 

Considering the market demands this area should be 

considered as thrust area for research. 
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