
International Journal of Computer & Organization Trends (IJCOT) – Volume 8 Issue 1Jan – Feb 2018

ISSN: 2231-5373 http://www.ijcotjournal.org Page 1

Quality Measurement Challenges for Artificial

Intelligence Software
Zafar Ali

Ms150200227, MSCS Student

Virtual University of Pakistan, Lahore, Pakistan

Abstract— In this paper, various metrics of software

measurements are explained with examples. The standards

developed for software measurement is described. The

goals of these standards are also explained. The challenges

of quality measurement for AI software are discussed here.

AI software is different from the common software in two

ways: it generally solves different kind of problems and it

solves the problems in a very different way.

AI software generally comes with a vague or a quickly

changing requirement list. Quality measurement becomes

meaningless as how far the objective has been achieved

cannot be decided when the objective itself is not clear.

Rapid prototyping and freezing of requirements is a short

term measure for this issue. The other option is to identify

the modules that can be implemented by conventional

software and to integrate the measurement plan of all these

modules with suitable modifications.

Another issue is; AI software is often implemented in a

heuristic manner that gives a poor readability and

measurement problems. Further a conflict between the

prejudiced human being as a tester and tolerant expert

system may take place. Ultimate goal of development of

expert system is to provide solutions to problems impossible

for normal human beings. Future research trends, both

long and short term, are briefed here.

Keywords—artificial-intelligence, software, quality,

measurement.

I. INTRODUCTION

Software quality measurement encompasses

varieties of techniques [1]. As new types of software

are emerging newer measurement techniques might be

essential. Initial attempt was to adopt the well

established techniques from hardware area.

Measurement techniques are mainly based on

measurement of defects or faults. In software area this

is commonly called as bugs. Due to defects or bugs

failures may take place. To estimate defects failure

rates can be studied. Some of the metrics related to

failure are:

Failure Probability F(t): It is the probability that

the software will fail prior to time t.

Reliability R(t): It is the probability that the

software will work satisfactorily till time t. Clearly,

R(t)=1 – F(t).

These metrics are extremely useful for hardware

components and many other metrics are defined and

analyzed. But estimation of these metrics for software

does not seem to be a practical idea. Probability is

estimated from large number of outcomes. For

hardware components a batch produces a huge

number of components. Estimation of various

probabilities is quite feasible. Further the observed

time tob can be scaled down from the predicted time t

by application of temperature, bias, electric field or

magnetic field stress.

For software there is no established concept of

stressing. The tester may need to wait for indefinite

time to get the software failure. There might be no

relation between software bugs and time t. Bugs

usually show up for a particular input set. Whenever a

bug is detected it should be removed. A bug removed

at a later stage always proves to be very expensive for

the software development. A bug in the requirement

analysis phase proves costliest if detected by customer

while using the software. This is in contradiction to

hardware component testing situation where defects

can be removed only in the next batch of

manufacturing. For software, probability estimations

are inconvenient due to lack of large number of

outcomes. As soon as a bug is detected it is removed.

After the bug removal this becomes a different

product and the test results from different products

cannot be clubbed.

For software, thorough testing and immediate bug

removal is the standard strategy. Testing can be

classified into two categories: static and dynamic. In

static testing thorough scrutiny is done without the

actual execution. In dynamic testing some type of

execution is necessary. There are various types of

dynamic testing. Random testing is done for randomly

generated inputs within the specified range. There is

no guarantee that software will be bug free after

random testing. Suppose software involves lots of

divisions and division by zero is not taken care.

Random inputs generated in a very large range of

integers may not include a zero. The particular bug

remains undetected. An exhaustive test with all input

sets is very time consuming. Further the sequence of

input application might be important for bug

detection. This is true for some Artificial Intelligence

(AI) software.

Testing should be of regression type. In this type

of testing after removal of a bug all the previously

done tests are repeated. This is needed as a bug

removal may or may not be successful and the

removal process may introduce additional bugs.

There are different views about what type of

software can be put in the AI category. W. J. Rapaport

made quite an exhaustive compilation of definitions of

AI software [2]. It is surprising to note that most of the

International Journal of Computer & Organization Trends (IJCOT) – Volume 8 Issue 1Jan – Feb 2018

ISSN: 2231-5373 http://www.ijcotjournal.org Page 2

definitions indicate that, this is new and emerging type

of software with not enough quality measurement

metrics, control and assurance. One such definition is:

“AI is a collective name for problems which we do

not yet know how to solve properly by computer.

Once we do know how to solve them, they are no

longer AI”. If we accept this definition quality

measurement is definitely a challenge or might be

impossible in some cases. However, to focus on a

particular type of software we follow the first

definition listed in this document: “The goal of work

in artificial intelligence is to build machines that

perform tasks normally requiring human intelligence”.

We follow the dictionary meaning of intelligence as:

“The ability to acquire and apply knowledge and

skills”.

Newborns are usually very intelligent. Though

they do not have any knowledge or skill they have the

capability to acquire and apply these. AI software just

after implementation can be compared to a newborn’s

brain.

In the learning phase it may learn face recognition

and becomes very knowledgeable. In the testing phase

it applies its knowledge to recognize a face and take a

suitable decision e.g. opening a door to a authenticated

person. Prior to learning it did not have any

knowledge but had the ability to learn and become

knowledgeable. So it was intelligent.

II. RELATED WORK

Software measurement metrics are directly taken

from the hardware component measurement. But the

two situations are different. N. Fenton et al.

emphasized the need for causality modeling [3].

Though the bugs are responsible for failure there is

no relation between the detected bugs and subsequent

failures. A detected bug is immediately removed. It is

the residual bugs that create the subsequent failures.

There is no relation between detected and the residual

bugs. This can be seen in the measured data in fig. 1.

Figure 1: Measured data for pre- and post-release

defects for different modules [3].

Authors developed a tool named AID based on

Bayesian network that can predict residual defects

distribution. Two modules were used one very simple

and the other very complex. From figures 2 and 3 it

can be observed that, detected defect distribution is

more in the simple module as compared to complex

module.

Figure 2: Distribution of defects detected in unit tests

for a very simple module [3].

Figure 3: Distribution of defects detected in unit tests

for a very complex module [3].

More number of detected defects does not

necessarily imply more defects in the software.

Though number of detected defects is much higher in

simple module is does not mean a simple module has

more defects than a complex module. From our

International Journal of Computer & Organization Trends (IJCOT) – Volume 8 Issue 1Jan – Feb 2018

ISSN: 2231-5373 http://www.ijcotjournal.org Page 3

common sense we can say that, it is just the reverse.

The complex module has less detected defects

because such module can hide the defects. This

becomes clear when residual defects are compared

for the two modules from figures 4 and 5.

Figure 4: Distribution for residual defects delivered for

a very simple module [3].

Figure 5: Distribution for residual defects delivered for

a very complex module [3].

M. Khraiwesh introduced the concept of Goal

Question Metrics (GQM) [4]. This is integrated in the

existing Capability Maturity Model Integration

(CMMI). This model is developed in Carnegie Melon

University and is practiced world-wide. The model

considers product as well as process level

measurements. Fig. 1 illustrates two types of goals.

Figure 6: Example of specific and generic goals [4].

J. Mylopoulos et al. did a study on non-functional

requirements based on goals [5]

L. Prechelt did an extensive study on quality

measurement status of Artificial Neural Network

(ANN) software [6]. The author collected papers on

ANN in the years 1993 – 94 from 5 journals. Total

190 papers were studied. For ANN the quality is very

much dependent on inputs. An algorithm should be

evaluated experimentally for as many input sets as

possible. It should be evaluated at-least for 2 input

sets so that comparisons can be done between the

two. Fig. 7 shows the % of reported algorithms vs.

the no. of input sets.

Figure 7: % of reported algorithms vs. no. of input sets

[6].

Above figure shows that, only 33% of algorithms

use 2 or more input sets. Often adequate input data of

a particular set is not available or accessible. This

problem is managed with artificial data inputs. These

artificial data are generated from suitable models.

Fig. 8 shows the % of reported algorithms vs. the no.

of artificial input sets.

International Journal of Computer & Organization Trends (IJCOT) – Volume 8 Issue 1Jan – Feb 2018

ISSN: 2231-5373 http://www.ijcotjournal.org Page 4

Figure 8: % of reported algorithms vs. no. of artificial

input sets [6].

Above figure shows no. of tested algorithms for 2 or

more input sets is further reduced. So non-availability

of real data is not the issue. Fig. 9 shows the

distribution for real data. Distribution remains the

same as artificial data for input data-sets below 6.

Figure 9: % of reported algorithms vs. no. of real input

sets [6].

Many reasons were given for inadequate testing.

Following gives the list of reasons along-with this

paper author’s comments.

A. An algorithm proposed for a very specific

application domain does not allow use of general

pupose test data.

Even if varieties of data sets are not applicable a

number of data sets can be created by selection of

data from the original data set and quality can be

compared. Use of noisy data-sets by introducing

artificial noise is useful in some cases.

B. Non-availability of comparable algorithms for the

very specific application domain.

But the algorithm can be compared with a

general-purpose algorithm.

C. Algorithms solving a problem for which no

solution was given earlier so it cannot be

compared to others.

This is true. But such algorithms were not found

in the reported study.

D. Totally new approaches to a problem do not allow

for comparison.

Software measurement is independent of the

approach.

E. Often a thorough evaluation is too much work.

But this needs to be done.

F. Erroneous data.

If only erroneous data are available the algorithm

should be able to eliminate the effect of errors on the

output.

The study clearly shows quality

measurement in this area is quite inadequate. Lots of

work needs to be done. The effort takes a backseat as

there are urgent needs for many practical applications

using ANN algorithms. One of the biggest problems

for quality measurement of ANN is the long

execution time. Training phase may take a week

depending on the nature of the problem. Whether the

training is successful or not cannot be known during

this phase. It can be known only in the next phase, the

testing phase. For unsuccessful training again the

very long training phase is to be repeated. Efforts are

on to reduce the training phase time by developing

novel architecture. D. F. Specht proposed General

Regression Neural Network (GRNN) with clustering

where training time is greatly reduced [7].

Figure 10: GRNN block diagram [7].

Here neurons arranged in four layers are

shown by circles, In the layer prior to output layer,

clustering is done that is very useful for regression

analysis. It has been demonstrated that clustering

greatly improves the execution time. The study has

International Journal of Computer & Organization Trends (IJCOT) – Volume 8 Issue 1Jan – Feb 2018

ISSN: 2231-5373 http://www.ijcotjournal.org Page 5

been done for simulation of a simple plant with

characteristics as given in fig. 11.

Figure 11: Outputs in time steps of plant (dark line) and

GRNN model (lighter line) after training with 1000

patterns [7].

GRNN model works in a satisfactory way for reduced

number of patterns. This can be understood if figures

11 and 12 are compared.

Figure 12: Output in time steps of plant (dark line) and

GRNN model (lighter line) for only 10 input patterns

[7].

 I. F. B. Tronto et al. compared traditional

regression analysis and ANN [8]. Results in Table I

show ANN performs better.

Table 1

R. S. Behara et al. did a detailed study on Service

Quality Measurement abbreviated as SERVQUAL

[9]. It is the difference in customer expectations and

perceptions scores. In this reported work, service

quality is measured along the five conceptually

distinct yet interrelated dimensions: tangibles,

reliability, responsiveness, assurance and empathy. A

systematic diagram of SERVQUAL for auto-service

named as reverse SERVQUAL is shown partly in fig.

13.

Figure 13: Reverse SERVQUAL, systematic diagram of

service quality [9].

Instead of perception minus expectation model a

perception only model is claimed to be more

accurate. However, adequate experimental results are

not available in this paper to support this claim.

M. R. Genesereth and S. P. Ketchpel applied the

recently developed concept of agent based computing

to AI [10]. Agents are separate modules that might be

developed in different languages, architectures and

platforms. Agents based computing might be thought

of at higher integration level than Object Oriented

Programming (OOP). In OOP objects consist of data

and process in the same language, architecture and

platform. Figures 14 and 15 illustrate the differences

between OOP and Multi Agent System (MAS).

International Journal of Computer & Organization Trends (IJCOT) – Volume 8 Issue 1Jan – Feb 2018

ISSN: 2231-5373 http://www.ijcotjournal.org Page 6

Figure 14: Traditional software architecture [11]

Figure 15: Architecture of Multi Agent Systems (MAS)

[11].

 With use of agents the AI software becomes

distributed and is called Distributed Artificial

Intelligence (DAI). F. Zambonelli and A. Omicini

[11] discussed the measurement issues with MAS.

Existing tools work only for a particular language and

platform. A new tool should view the interaction

between agents at macro level. But at macro level

quality measurement becomes an issue. If the

interactions are studied at micro level it becomes too

complex. Authors defined a new concept of “Meso”

level of interaction to ease quality measurement

studies.

 M. Harman and B. F. Jones [12] applied

Genetic Algorithm (GA) for information search an

interesting application in the area of AI. Software

measurement is an issue for such meta-heuristic

algorithm.

III. ANALYSIS

 Initially quality measurement metrics

were directly taken from the established

metrics for hardware components. But

software quality measurement is different

from hardware quality measurement.

 Software is flexible hardware is rigid.

Sometimes the flexibility creates a

problem for measurement.

 For AI software dynamic testing is an

issue. Software usually has long

execution time with learning and testing

phase. Failures can be detected only at

the end phase or testing phase.

 AI algorithms are of heuristic nature; this

poses a problem for static testing.

 AI software work with large number of

input sets. Exhaustive test for all

combination of inputs seems to be

impractical.

 For AI software testing at the learning

phase sequence of inputs are important.

 AI software has varieties of real life

applications. For many emerging

applications quality measurement

demands a revisit.

IV. CONCLUSION

Software quality measurement is one of the most

important tasks in software engineering. Initially the

measurement metrics were taken from the existing

hardware components. That creates a problem as two

situations are different. Artificial intelligence software

has several issues for quality measurement.

Considering the market demands this area should be

considered as thrust area for research.

REFERENCES

[1] J. Rushby, “Quality measures and assurance for AI software,

Technical Report CSL-88-7R, Computer Science Laboratory,
SRI International, Menlo Park, CA 94025, also available as

NASA contractor report 4187, pp. 1 – 134, September 1988.

Available: http://www.csl.sri.com/papers/csl-88-7/csl-88-
7r.pdf

Viewed: 9th July 2015.

[2] W. J. Rapaport, “Some definitions of artificial intellgence”.

State University of New York at Buffalo, Buffalo, NY

14260-2000, September 2012. Available:

International Journal of Computer & Organization Trends (IJCOT) – Volume 8 Issue 1Jan – Feb 2018

ISSN: 2231-5373 http://www.ijcotjournal.org Page 7

http://www.cse.buffalo.edu/~rapaport/572/S02/aidefs.html

Viewed: 6th July, 2015.

[3] N. Fenton, P. Krause, and M. Neil, “Software measurement:

uncertainty and causal modelling”, IEEE Software, vol. 19,
no. 4, pp. 116 - 122, July 2002.

[4] M. Khraiwesh, “Process and product quality assurance

measures in CMMI”, International Journal of Computer
Science and Engineering Survey, IJCES, vol. 5, no. 3, pp. 1 -

15, June 2014.

[5] J. Mylopoulos, L. Chung, and B. Nixon. “Representing and

using nonfunctional requirements: A process oriented

approach”, IEEE Trans. Software Engineering, vol. 18, no. 6,
pp. 483 – 497, June 1992.

[6] L. Prechelt, “A quantitative study of experimental evaluations

of neural network learning algorithms: current research
practice”, Neural Networks, vol. 9. pp. 1 – 7, 1995.

[7] D. F. Specht, “A general regression neural network”, IEEE
Trans. Neural Networks, vol. 2, no. 2, pp. 568 – 576,

November 1991.

[8] I. F. B. Tronto, J. D. S. Silva, N. S. Anna, “Comparison of

artificial neural network and regression models in software

effort estimation”, Proc. International Joint Conference on

Neural Networks, Orlando, Florida, USA, August 2007, pp. 1

– 6.

[9] R. S. Behara, W. W. Fisher, and J. G. A. M. Lemmink,
“Modelling and evaluating service quality measurement using

neural networks”, International Journals of Operations and

Production Management, IJOPM, vol. 22, no. 2, pp. 1162 –
1185, 2002.

[10] M. R. Genesereth and S. P. Ketchpel, “Software agents”,

Center for Integrated Facilty Engineering, CIFE, Stanford
University, CA 94305-4020, no.32, pp. 1 – 12, April 1994.

[11] F. Zambonelli and A. Omicini, “Challenges and research
directions in agent-oriented software engineering”,

Autonomous Agents and Multi-Agent Systems, Kluwer

Academic Publishers, vol. 9, pp. 253 – 283, 2004.

[12] M. Harman and B. F. Jones, “Search based software

engineering”, Information and Software Technology, vol. 43,

Elsevier, pp. 833 - 839, 2001.

