
International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 4 – July to August 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 55

Model Driven Architecture based Agile

Modelled Layered Security Architecture for

Web Services Extended to Cloud, Big Data

and IOT

Dr.D.Shravani

Rayalaseema University, Kurnool, A.P, India

Abstract This research paper consists of Model

Driven Architecture based Agile Security

Architecture for Web Services extended to Cloud,

Big Data and IOT.

Keywords - Security Engineering, Security

Architectures, Web Services, Cloud Computing, Big

Data, IOT

I. INTRODUCTION

 In this paper, our methodology of Security design

of Model Driven Architecture based Agile Modeled

Layered Security Architecture is given, for Web

Services Security Design with appropriate Web

Services Case Studies design using Class Diagrams

and Sequence Diagrams design.

3.1 MDA BASED AGILE MODELED

LAYERED SECURITY ARCHITECTURE:

Because of several vulnerabilities in software

products and high amount of damage caused by

them, software developers are enforced to produce

more secure systems. Software grows up through its

life cycle, so software development methodologies

should pay special attention to security aspects of the

product. Using this approach method engineer of the

research implementation can enhance their agile

software development process with security features

to increase product’s trustworthiness.

 A secure system is one that is protected against

specific undesired outcomes. Delivering a secure

system, and particularly, a secure web application, is

not easy. Integrating general-purpose information

systems development systems with security

development activities could be a useful means to

support these difficulties. Agile processes, such as

Extreme programming, are of increasing interest in

software development. Most significantly for web

applications, agile processes encourage and embrace

requirements change, which is a desirable

characteristic for web application development.

Agile methods include Feature Driven Development

(FDD) and mature security methods, namely risk

analysis, and integrate them to address the

development of secure web applications. This

approach key features includes: a process capable of

dealing with the key challenges of applications

development like decreasing life-cycle times and

frequently changing requirements and an iterative

approach to risk analysis that integrates security

design throughout the development process.

Class diagram Design for MDA authentication

using Executable UML

The Figure 3.1 (Class Diagram Design) provides

the MDA authentication using Executable UML.

User enters username and password to access

information. Authenticator checks the username and

associated password to know whether the user is

really he or she claims to be. Authenticator allows

the user depending on the check result. Authorizer

checks this user type (for example, administrator)

and associated access rights. Authorizer restricts the

user to access the information. The entered username

and password by any user will be transformed in an

encrypted format so that any other user who is

correctly logged in cannot recognize it. Therefore

security class provides a key and algorithm used to

encrypt the data. Its implementation Sequence

Diagram works as: User enters the username and

password which are encrypted and transferred to

authenticator to verify correctness. Then access

rights for specified user are checked to allow for

accessing of information.

Class diagram Design of Agile Methodologies

with Security Activities

The Figure 3.2. (Class diagram design) the Agile

Methodologies with Security Activities. Agile

methodologies for security activities include

applying agility measurement and applying an

efficient agility reduction tolerance. First Security

Activities are extracted from existing processes and

guidelines from SecurityActivity class. The activities

are named as ―Security Activities‖ and these are

used as basis for next steps. Classification of

activities is done by understanding them in life cycle.

Agility degree of activities is defined to measure

their nimbleness. Agility degree for each activity is

defined as its agile behavior. It represents level of

activity’s compatibility with agile methodologies.

Grades between 0 and 5 are assigned in agility

degree vector (ADVect).Then integration issues of

agile and security activities are handled. By

analyzing agile methodologies and identifying their

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 4 – July to August 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 56

core engine activities integration is done. Activity

integration compatibility matrix (AICM) is

generated with binary values. An algorithm to

integrate security activities with organization’s agile

process is introduced in Algorithm class. Follows all

steps activity by activity recursively. Finally agility

reduction tolerance parameter and its optimization

value are discussed in ART class. Tuning ART

parameter is SMET’s (Secure Method Engineer

Team) art to keep a balance between security and

weight of the software development process.

Figure 3.1 Class diagram Design for MDA

authentication using Executable UML

Sequence diagram of Methodology for

Predecessor activities of an Agile Methodology. The

Figure 3.3. provides predecessor activities of an

Agile Methodology as an Sequence diagram

methodology design.

Sequence diagram of Methodology for Agile

Implementation. The Figure 3.4 provides

implementation details of Agile Security

Implementation as a Sequence diagram methodology

design.

 Figure 3.2 Class Diagram Design of Agile

Methodologies with Security Activities.

PrespiralPla
n

StakeholderRe
quirements

Development
Environment

1: Create a schedule

2: Create a team work

3: Plan for reuse

4: Plan for risk reduction

5: Specify the logical architecture

6: Perform initial safety and reliability analysis

7: Link this plan report with requirements

8: Define the product vision

9: Find and outline stakeholder requirements

10: Detail the stakeholder requirements

11: Review stakeholder requirements

12: relate the requirements with development environment

13: Tailor the process

14: Install the development tools

15: Configure the development tools

16: Initialize the development tools

17: Launch the development tools

Figure 3.3: Sequence diagram for Predecessor

activities of an Agile Methodology.

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 4 – July to August 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 57

AgileAnalysis AgileDesign AgileTesting

1: Prototype definition is given

2: Do the Object analysis

3: send the report for designing for optimization and use of design patterns

4: Architectural design rules are applied for gross optimization

5: Mechanistic design rules are applied for system optimization

6: Detailed design rules are applied for optimization at system at primitive elements level

7: Allow for testing the design

8: Do Unit testing

9: Implement Integration testing

10: Apply Validation testing

Figure 3.4: Sequence diagram for Agile

Implementation

Agile Security Patterns

The Dependency-Inversion Principal

Dependency Inversion Policy: Dependency

inversion can be applied wherever one class sends a

message to another. For example, the case of the

Button object and the Lamp object [Bruce Powel

Douglass].

The Button object senses the external

environment. On receiving the Poll message, the

Button object determines whether a user has

―pressed‖ it. It doesn’t matter what the sensing

mechanism is. It could be a button icon on a GUI, a

physical button being pressed by a human finger, or

even a motion detector in a home security system.

The Button object detects that a user has either

activated or deactivated it. The Lamp object affects

the external environment. On receiving a TurnOn

message, the Lamp object illuminates a light of

some kind. On receiving a TurnOff message, it

extinguishes that light. The physical mechanism is

unimportant. It could be an LED on a computer

console, a mercury vapor lamp in a parking lot, or

even the laser in a laser printer. The Button object

receives Poll message, determines whether the

button has been pressed, and then simply sends the

TurnOn or TurnOff message to the Lamp.

The Button class depends directly on the Lamp

class. This dependency implies that Button will be

affected by changes to Lamp. This violates DIP. The

high level policy of the application has not been

separated from the low level implementation. High-

level policy is the abstraction that underlies the

application, the truths that do not vary when the

details are changed. It is the system inside the

system, it is the metaphor. Here, the Button now

holds an association to a ButtonServer, which

provides the interfaces that Button can use to turn

something on or off. Lamp implements the

ButtonServer interface. Thus, Lamp is now doing

the depending rather than being depended on. This

allows a Button to control any device that is willing

to implement the ButtonServer interface. This

provides a great deal of flexibility. (The Figure 3.5

provides the class diagram for this principle.)

Figure 3.5: Class Diagram for Dependency

Inversion Principal.

Interface Segregation Principle

Interface Pollution: Consider a security system in

which Door objects can be locked and unlocked and

know whether they are open or closed. This Door is

coded as an interface so that clients can use objects

that conform to the Door interface without having to

depend on particular implementations of Door. Let

us consider a TimedDoor which needs to sound an

alarm when the door has been left open for too long.

In order to do this, the TimedDoor object

communicates with another object called a Timer.

When an object wishes to be informed about a

timeout, it calls the Register function of the Timer.

Force Door, and therefore TimedDoor, to inherit

from TimerClient. This ensures that TimerClient can

register itself with the Timer and receive the

TimeOut message. The problem with this solution is

that the Door class now depends on TimerClient.

Not all varieties of Door need timing. The

applications that use those derivatives will have to

import the definition of the TimerClient class, even

though it is not used. This causes complexity and

redundancy. Separate Client Means Separate

Interfaces: Door and TimerClient represent

interfaces that are used by completely different

clients. Timer uses TimerClient, and classes that

manipulate doors use Door. Since the clients are

separate, the interfaces should be separate too,

because clients exert forces on their server interfaces.

Include a unique timeOutId code in each timeout

registration and repeat that code in the TimeOut call

to the TimerClient. (The Figure 3.6 provides the

class diagram for this principle.)

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 4 – July to August 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 58

Figure 3.6. Class Diagram for Interface Pollution

Separation through Delegation: One solution to

ISP is to create an object that derives from

TimerClient and delegates to the TimedDoor. When

it wants to register a timeout request with the Timer,

the TimedDoor creates a DoorTimerAdapter and

registers it with the Timer. When the Timer sends

the TimeOut message to the DoorTimerAdapter, the

DoorTimerAdapter delegates the message back to

the TimedDoor. This solution conforms to ISP and

prevents the coupling of Door clients to Timer. Even

if the change to Timer were to be made, none of the

users of Door would be affected. Moreover,

TimedDoor does not have to have the exact same

interface as TimerClient. The DoorTimerAdapter

can translate the TimerClient interface into the

TimedDoor interface. Thus this is a very general

purpose solution. But in this solution, the delegation

requires a very small amount of runtime and

memory. (The Figure 3.7 provides the class diagram

for this principle.)

Figure 3.7 Class Diagram for Separation through

delegation.

Separation through Multiple Inheritances:

TimedDoor inherits from both Door and TimerClient.

Although clients of both base classes can make use

of TimedDoor, neither depends on the TimedDoor

class. Thus, they use the same object through

separate interfaces. (The Figure 3.8 provides the

class diagram for this principle.)

. Figure 3.8.Class Diagram for separation

through Multiple Inheritance.

3.2 MDA BASED AGILE MODELED

LAYERED SECURITY DESIGN FOR WEB

SERVICES:

3.2.1 Architecting Secure Web Services

Architecture

Service-Oriented Architectures (SOA) represents

a new evolving model for building distributed

applications. Services are distributed components

that provide well-defines interfaces that process and

deliver XML messages. A service-based approach

makes sense for building solutions that cross

organizational, departmental, and corporate domain

boundaries. A business with multiple systems and

applications on different platforms can use SOA to

build a loosely coupled integration solution that

implements unified workflows. Security in an SOA

environment involves verifying several elements and

maintaining confidence as the environment evolves.

Organizations deploying SOA implementations

should identify practical strategies for security

verification of individual elements, but should be

aware that establishing the security characteristics of

composites and applications using services is an

active research. Organizations should also identify

the deployment strategies for the SOA infrastructure,

services, composites, and applications because

different deployment strategies can entail different

security verification practices. Finally, all elements

should be verified in their operational contexts

[Coppolino L].

 Web Services are the most popular

implementation approach for SOA. The elements of

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 4 – July to August 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 59

a Web Service from a security perspective are the

service interface, service implementation, message

payload, and service level agreement (SLA). All of

these elements are visible to participating parties

except for the service implementation, which is

usually hidden and known only to the service

provider. Table 3.1. presents Web Services Security

Threat Framework

TABLE 3.2: WEB SERVICES

SECURITY PATTERNS

Category Pattern

Authentication Brokered Authentication

Brokered Authentication:

Kerberos

Brokered Authentication:

X509 PKI

Brokered Authentication:

STS

Direct Authentication

Authorization Trusted Subsystem

Exception

Management

Exception Shielding

Message

Encryption

Data Confidentiality

Message

Replay

Detection

Message Replay Detection

Message

Signing

Data Origin Authentication

Message

Validation

Message Validator

Deployment Perimeter Service Router

Design Patterns for Web Services

Design Patterns for Building Message-Oriented

Web Services

There are six steps involved in building message-

oriented Web services, which is simply a Web

service that exchanges XML schema-based input

and output messages rather than simple parameter-

oriented values. The steps are described in the

following sections.

Step 1: Design the Messages and Data Types

Step 2: Build the XSD Schema File for the Data

Types

Step 3: Create a Class File of Interface

Definitions for the Messages and Data

 Types. Optional step 3A: Generate the

WSDL Document Manually

Step 4: Implement the Interface in the Web

Service Code-Behind File

Step 5: Generate a Proxy Class File for Clients

Based on the WSDL Document

Step 6: Implement a Web Service Client Using a

Proxy Class File

Design Patterns for Building Service-Oriented

Web Services

Message-oriented web services are the building

blocks for service-oriented applications. There are

six steps involved in building a message –oriented

web service that is compatible with SOA.

Step 1: Create a dedicated type definition

Assembly

Step 2: Create a Dedicated Business Assembly

Web

Services

Layer

Attacks and Threats

Layer 1:

Web

Services

in Transit

 In transit Sniffing or

Spoofing

 WS-Routing security

concern

 Replay attacks

Lauer 2:

Web

Services

Engine

 Buffer Overflow

 XML parsing attacks

 Spoiling Schema

 Complex or Recursive

structure as payload

 Denial of Services

 Large payload

Layer 3:

Web

Services

Deployme

nt

 Fault Code Leaks

 Permissions and Access

issues

 Poor Policies

 Customized error leakage

 Authentication and

Certification

Layer 4:

Web

Services

User Code

 Parameter tampering

 WSDL probing

 SQL/LDAP/XPATH/OS

command injection

 Virus/Spyware/Malware

injection

 Brute force

 Data type mismatch

 Content spoofing

 Session tampering

 Format string

 Information Leakage,

Authorization

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 4 – July to August 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 60

 Step 3: Create the Web Service Based on the

Type Definition Assembly

Step 4: Implement the Business Interface in the

Web Service

Step 5: Generate a Web Service Proxy Class File

Based on the WSDL Document

Step 6: Create a Web Service Client

Architecting Secure Web Services Architectures

Web as a media and Web Services as a

technology is emerging as a mode of business-to-

business and e-commerce transactions. Most of these

transactions will carry business-critical and sensitive

information that must be secured. Like any other

technology domain, secure Web Services is complex

and possibly overwhelming. Addressing a breach-in

that includes cost of liability, public relations, and

loss of business could be more expensive than

implementing security measures in advance. Also,

security should be enforced throughout the

infrastructure. Research issues include Web Services

technology, its vulnerabilities, enforcing security in

this media, emerging security standards

incorporating into Web Services applications. Secure

SOA Web Services with WS_Security – A Case

Study introduction

Companies have started the adoption of Web

Service technology and the WS-Security

specification as an approach to ensure the integrity

of transmitted messages and data. The WS-Security

specification is a joint effort by Microsoft, IBM, and

VeriSign to address this most important issue. The

WS-Security specification is designed to provide an

extensible security implementation that will evolve

as Web Services technology becomes more

sophisticated. Both WS-Security and WSE 3.0 plays

an important role when building Microsoft .NET-

based Web Services or Web Services consumers.

WS-Security integrates a set of popular security

technologies, including digital signing and

encryption based on security tokens, including

X.509 certificates. It is flexible and is designed to be

used as the basis for the construction of a wide

variety of security models, including PKI, Kerberos

and SSL. Particularly WS-Security provides support

for multiple security tokens, multiple trust domains,

multiple signature formats, and multiple encryption

technologies. Table 3.3 provides Security concepts

and security patterns in development phases.

Design Patterns for Web Services

Design Patterns for Building Message-Oriented

Web Services

There are six steps involved in building message-

oriented Web services, which is simply a Web

service that exchanges XML schema-based input

and output messages rather than simple parameter-

oriented values. The steps are described in the

following sections.

Step 1: Design the Messages and Data Types

Step 2: Build the XSD Schema File for the Data

Types

Step 3: Create a Class File of Interface

Definitions for the Messages and Data

 Types. Optional step 3A: Generate the

WSDL Document Manually

Step 4: Implement the Interface in the Web

Service Code-Behind File

Step 5: Generate a Proxy Class File for Clients

Based on the WSDL Document

Step 6: Implement a Web Service Client Using a

Proxy Class File

Design Patterns for Building Service-Oriented

Web Services

Message-oriented web services are the building

blocks for service-oriented applications. There are

six steps involved in building a message –oriented

web service that is compatible with SOA.

Step 1: Create a dedicated type definition

Assembly

Step 2: Create a Dedicated Business Assembly

 Step 3: Create the Web Service Based on the

Type Definition Assembly

Step 4: Implement the Business Interface in the

Web Service

Step 5: Generate a Web Service Proxy Class File

Based on the WSDL Document

Step 6: Create a Web Service Client

Architecting Secure Web Services Architectures

Web as a media and Web Services as a

technology is emerging as a mode of business-to-

business and e-commerce transactions. Most of these

transactions will carry business-critical and sensitive

information that must be secured. Like any other

technology domain, secure Web Services is complex

and possibly overwhelming. Addressing a breach-in

that includes cost of liability, public relations, and

loss of business could be more expensive than

implementing security measures in advance. Also,

security should be enforced throughout the

infrastructure. Research issues include Web Services

technology, its vulnerabilities, enforcing security in

this media, emerging security standards

incorporating into Web Services applications. Secure

SOA Web Services with WS_Security – A Case

Study introduction

Companies have started the adoption of Web

Service technology and the WS-Security

specification as an approach to ensure the integrity

of transmitted messages and data. The WS-Security

specification is a joint effort by Microsoft, IBM, and

VeriSign to address this most important issue. The

WS-Security specification is designed to provide an

extensible security implementation that will evolve

as Web Services technology becomes more

sophisticated. Both WS-Security and WSE 3.0 plays

an important role when building Microsoft .NET-

based Web Services or Web Services consumers.

WS-Security integrates a set of popular security

technologies, including digital signing and

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 4 – July to August 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 61

encryption based on security tokens, including

X.509 certificates. It is flexible and is designed to be

used as the basis for the construction of a wide

variety of security models, including PKI, Kerberos

and SSL. Particularly WS-Security provides support

for multiple security tokens, multiple trust domains,

multiple signature formats, and multiple encryption

technologies. Table 3.3 provides Security concepts

and security patterns in development phases.

Table 3.3 : SECURITY CONCEPTS AND

SECURITY PATTERNS IN DEVELOPMENT

PHASES

Case Study

We had implemented a case study, a simple

example that secures the StockTrader application.

We implemented the UsernameForCertificate

assertion that secures the WSE Security Settings

wizard and created a custom username token

manager. Finally we authorized users using either

code or a policy file.

 Brokered Authentication:

The client and service do not attempt to

authenticate each other directly. They use an

intermediary that validates the client’s identity and

then provides a security token as proof of successful

authentication. The client attaches this token to the

request and the service uses this token to

authenticate the client. There are some

authentication brokers such as VeriSign, Windows

Active Directory exists.

Implementation and Validation of this case study

The Figure 3.9 consists of class diagram design

for Place trade before UserNameToken. Client

requests the web page for placing the trade; Stock

Trader sends the respond as web page along with the

request to enter "accNo., symbol, share, price,

tradeType" values; Client enters the values and

invokes the page; Trader sends the respond as an

xml page acceptance.No security involves in this

approach.

The Figure 3.10 consists of class diagram design for

Place trade after UserNameToken. Client requests

the web page for placing the trade; Stock Trader

sends the respond as web page along with the

request to enter "accNo., symbol, share, price,

tradeType" values; Client enters the values and

invokes the page; Trader requests for security

checkup; StockTraderSecure checks the
usernametoken value for specified client and

generates reply to Trader; Trader sends the respond

as an xml page. Security is involved as

UserNameToken value.

Figure 3.9. Class diagram for Place trade before

UserNameToken.

Figure 3.10. Class diagram for Place trade after

UserNameToken. The Figure 3.11 consists of class

diagram for RequestQuote. Client requests for

RequestQuote web page; Trader replies with page by

asking the client to enter "symbol, tradeType" values;

Client enters the values and invokes; Trader makes a

security checkup with StockTraderSecure and sends

the reply; Reply consists of all the trade values of

particular symbol.

An Active Directory Kerberos ticket has a default of

ten hours duration. Client need to request the token

once during the session. Brokered Authentication

can be implemented in using WSE 3.0 in: Kerberos;

X.509 certificates; Custom security token. Brokered

Authentication using Mutual Certificate using X.509

Concept / Phase Architecture and

Design Phase

Countermeasure Feasibility ++

Risk Estimated

Threat Feasibility

Attack Feasibility

Attacker Feasibility

Vulnerability Feasibility

Specification 1.

Asset

Designed with Security +

Specification 2.

Stakeholder

Reviews

Specification 3.

Objective

Reviewed +

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 4 – July to August 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 62

certificate option is given as below. (The Figure 3.12

Class Diagram for Mutual Certificate assertion

message flow)

The steps involved are given as: Attach X.509

certificate to the message at client side; Sign the

message using the client’s private key; Encrypt the

message using the service’s public key; Validate the

client certificate; Decrypt the message at service side

using private key of service; Validate the signature

by decrypting it using public key of client. Brokered

Authentication using Kerberos Protocol option is as

follows: When user logs in, client encrypts the

password using a symmetric key and sends a request

to the KDC (Key Distribution Center) for a Ticket

Granting Ticket (TGT). If key matches the value

stored in Active Directory the KDC sends the TGT

and session key. This session key is encrypted by

KDC using user’s long term key. The TGT is

encrypted using KDC secret key. The client sends a

request to KDC. The KDC decrypts the TGT with

long term key, and decrypts the authenticator using

session key. KDC validates and creates new session

key. The server receives the request that has the

Kerberos security token attached to it. Server will

use session key to decrypt the authenticator. The

Figure 3.13 provides the execution screen shot of the

StockTrader_Web_Service_Home_Page.htm output

Figure 3.12. Class Diagram for Mutual Certificate

assertion message flow.

Figure 3.13 :

StockTrader_Web_Service_Home_Page.htm

output

3.3 IMPLEMENTATIONS AND

VALIDATIONS:

3.3.1 Basic Secure Web Services Design using

Agile Modeling

SERVICE-ORIENTED computing (SOC) is an

emerging paradigm for designing distributed

applications [A Mohammed]. SOC applications

are obtained by suitably composing and

coordinating (that is, orchestrating) available

services. Services are stand-alone computational

units distributed over a network and are made

available through standard interaction

mechanisms. Composition of services may

require peculiar mechanisms to handle complex

interaction patterns (for example, to implement

transactions) while enforcing nonfunctional

requirements on the system behavior, for example,

security, availability, performance, transactional,

quality of service, etc. From a methodological

perspective, Software Engineering should

facilitate the shift from traditional approaches to

the emerging service-oriented solutions. Along

these lines, one of the goals of this work is to

strengthen the adoption of formal techniques for

modeling, designing, and verifying SOC

applications. In particular, we propose a SOC

modeling framework supporting history-based

security and call by contract [Constance L

Heitmeyer].

The execution of a program may involve

accessing security-critical resources and these

actions are logged into histories. The security

mechanism may inspect these histories and forbid

those executions that would violate the prescribed

policies. Service composition heavily depends on

which information about a service is made public,

on how those services that match the user’s

requirements can be chosen, and on their actual

runtime behavior. Security makes service

composition even harder. Services may be offered

by different providers which only partially trust

each other. On the one hand, providers have to

guarantee that the delivered service respects a

given security policy in any interaction with the

operational environment, regardless of who

actually called the service. On the other hand,

clients may want to protect their sensitive data

from the services invoked [Elisa Betrino].

 This case study methodology for designing and

composing services is to create new services, and

to sell it by a package base through a secured

media. In particular, we are concerned with Safety

properties of service behavior. Services can

enforce security policies locally and can invoke

other services that respect given security contracts.

This call-by-contract mechanism offers a

significant set of opportunities, each driving

secure ways to compose services. We discuss how

we can correctly plan service compositions in

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 4 – July to August 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 63

several relevant classes of services and security

properties This case study formalism features

dynamic and static approach, thus allowing for

formal reasoning about systems. Static analysis

and model checking techniques provide the

designer with useful information to assess and fix

possible vulnerabilities.

Several approaches have been developed to

support the verification of service-oriented

systems. For example, dynamic bisimulation-

based techniques have been adopted to analyze

the consistency between orchestration and

choreography of services whereas state-space

analysis has been exploited to check the

correctness of service orchestration. This case

study approach approach allows for synthesizing

and checking the correctness of the orchestration

statically [Kearsten Sohr].

In proposed system, we introduced a UML-like

graphical language for designing and verifying

the security policies of service oriented

applications. Another feature offered by this case

study framework is that of mapping high-level

service descriptions into more concrete programs.

This can be done with the help of simple model

transformation tools. Such model-driven

transformation would require very little user

intervention. Here one new framework is

introduced called Service Component

Architecture (SCA). This framework aims at

simplifying implementations by allowing

designers to focus only on the business logic

while complying with existing standards. This

case study approach complements the SCA view,

providing a full-fledged mathematical framework

for designing and verifying properties of service

assemblies. It would be interesting to develop a

(model-transformation) mapping from this case

study approach for formal framework to SCA.

The Figure 3.14 provides the class diagram for

Web Services Design Application [Massimo

Barloletti].

Fig. 3.14 Class Diagram for Web Services

Application Agile Design

Role Based Access Control for Web Services

Security Policies Design

In the computerized world all the data are saved on

electronically. It also contains more sensitive data.

In computer systems security, role-based access

control is an approach to restricting system access to

authorized users [Michele Barletta]. It is a newer

alternative approach to mandatory access control and

discretionary access control. Security critical

business processes are mapped to their digital

governments. It needs different security

requirements, such as healthcare industry, digital

government, and financial service institute. So the

authorization and authentication play a vital role.

Authorization constraints help the policy architect

design and express higher level organizational rules.

Access is the ability to do something with a

computer resource (e.g., use, change, or view).

Access control is the means by which the ability is

explicitly enabled or restricted in some way (usually

through physical and system-based controls).

Computer- based access controls can prescribe not

only who or what process may have access to a

specific system resource, but also the type of access

that is permitted. These controls may be

implemented in the computer system or in external

devices. The Figure 3.15 and the Figure 3.16 which

provides respectively class diagram and sequence

diagram for Role-based access control for Web

Services policies [Mohammed A].

Figure. 3.15 Class Diagram for RBAC Web Services

Security Policies

International Journal of Computer & Organization Trends (IJCOT) –Volume 6 Issue 4 – July to August 2016

ISSN: 2249-2615 http://www.ijpttjournal.org Page 64

Admin Edit Information User Job Processing

Create User

Assign Role

Admin Job

Job

Figure. 3.16 Sequence Diagram for RBAC Web

Services Security policies

CONCLUSION

In this paper we developed Agile Modeling for

Security Architectures. Later on we developed Agile

Modeling for Secure Web Services Architecture

design, with simple case study and implementations.

Finally we developed Basic Secure Web Services

Design using Agile Modeling.

REFERENCES

[1] Frank Innerhofer-Oberperfler, Markus Mitterer, et al

[2009], ―Security Analysis of Service Oriented Systems –
A Methodical Approach and Case Study‖, IGI Global,

Information Science Reference, DOI:10.4018/978-1-

60566-950-2.ch002, pp. 33 – 56.
[2] George Spanoudakis and Andrea Zisman

[2010] ,―Discovering Services during Service-Based

System Design Using UML‖, IEEE Transactions on

Software Engineering, Vol 36, No.3, May/June 2010, PP

371 – 389.

[3] Giorgia Lodi, Leonardo Querzoni, Roberto Beraldi,
Roberto Baldoni [2008], ―Combining Service-Oriented and

Event-driven architectures for Designing Dependable

systems‖, pp. 1 – 13.
[4] Gunnar Peterson, LLC, 2007 ―Security Architecture

Blueprint‖, Arctec Group, a White Paper, pp. 1 - 6.

[5] G.Rayana Gouds, M.Sriivasa Rao and Akhilesh Soni
[2009], ―Semantic Firewall: An approach towards

Autonomous Web Security in Service Oriented

Environments‖, International Journal of Recent Trends in
Engineering, Vol. 1, No. 1,ACEEE Academy Publishers pp.

May 2009 454— 458.

[6] Halvard Skogsrud [2009], ―Modeling Trust Negotiation for
Web Services‖, IEEE, February 2009, pp. 1 – 6.

[7] Heiko Tillwick and Martin S Olivier [2004], ―A Layered

Security Architecture: Design Issues‖, in Proceedings of

the Fourth Annual Information Security South Africa

Conference (ISSA2004) July 2004, pp. 1 – 4.

[8] Hiren Bhatt, Arup Dasgupta [2011],―The Disruptive

Cloud‖, Geo Spatial World, May 2011 pp. 20 – 28
[9] Hohn S, Lowis L, Jurjens J, Accorsi R,, [2009],

―Identification of vulnerabilities in Web Services using

Model-based architecture‖, IGI Global publishers, 2009,
pp. 1 -32.

[10] Hossein Keramati, Seyed-Hassan Mirian-Hosseinabadi

[2008], ―Integrating software development security
activities with agile methodologies," aiccsa, IEEE/ACS

International Conference on Computer Systems and

Applications pp.749-754.
[11] I. Lazar, B. Parv, S. Motogna, I.-G. Czibula, C.-L. Lazar

[2007], ―An Agile MDA approach for Executable UML

Structured Activities‖, Studia Univ. Babes-bolyai,
Informatics, vol. LII, No. 2, , pp.111-114

[12] Jameela Al-Jaroodi, Alyaziyah Al-dhaheri [2011) ―Security

issues of Service-oriented middleware‖, In International
Journal of Computer Science and Network Security Vol 2

No 1, pp. 153 – 160.

[13] James S.Tiller [2011], ―Adaptive Security management
Architecture‖, Auerbach Publications, pp. 1 – 14.

[14] Jeremy Epstein, Scott Matsumotto and Gary McGraw
[2006], ―Software Security and SOA: Danger, Will

Robinson‖, IEEE Security and Privacy, January/February
2006, pp. 80–83.

